High Assurance Cryptographic
Software
using Rust and

Lasse Letager Hansen

PhD Dissertation

\\F“Q @ %

e

s TAs Mk‘“s

>
s.S\m\Q

I

7
é‘/[,s

Department of Computer Science
Aarhus University
Denmark

High Assurance Cryptographic
Software
using Rust and

A Dissertation
Presented to the Faculty of Natural Sciences
of Aarhus University
in Partial Fulfillment of the Requirements
for the PhD Degree

by
Lasse Letager Hansen
2025-08-31

Abstract

As technology is advancing, more domains are moving to the electronic and online
world. This introduces both more complexity, which can introduce bugs, and also
allows for the ability for attacks, especially as computers are getting more powerful
and the world is getting more connected. Thus, we should ensure not only the
correctness but also the security of our technology.

We have built Hax, a multi-prover developer-driven framework, to take code
written in a safe subset of Rust, i.e., memory- and type-safe, and translate it into a
selection of backends. To help with the scalability of Hax, we develop a verified
version of parts of the Rust core library.

To do formal cryptographic proofs in a game-hopping style, we use SSProve,
a Rocq library, which is based on state-separating proofs (SSP). We extend Hax
with a Rocq and SSProve backend to allow us to use Rust as a specification and
implementation language.

Using this basis, we first developed a framework to do end-to-end formal veri-
fication of efficient cryptographic implementations. We achieve this by writing the
efficient implementation in Jasmin and the specification in Rust and then translating
both to SSProve. We apply this framework to AES and show the implementation
equivalent to the specification and prove security (IND-CPA).

Next, we build a framework for proving security and correctness of practical
cryptographic protocols. We implement Bert13, a portable, post-quantum TLS 1.3
implementation in Rust. We use Hax to translate it into multiple backends. We prove
parser correctness and panic freedom in F*. ProVerif is used to show protocol-level
guarantees, such as server authentication and session key forward secrecy. Finally,
we use SSProve to formalize parts of the security proof of the TLS 1.3 key schedule,
strengthening the results of an existing paper proof.

In the final paper, we introduce a framework to do formal verification of security
and correctness properties of smart contracts. The framework uses Hax to translate
smart contracts into SSProve and ConCert. We apply it to a realistic voting proto-
col, the open vote network (OVN) protocol, for which we show maximum ballot
secrecy (MBS), a security property, in SSProve, and self-tallying, a correctness prop-
erty, in ConCert. After the paper, we present an alternative proof of the MBS and
improvements to the smart contract.

We finish the thesis with related work, a general discussion of the results from the
thesis, and future work.

Resumé

I denne afhandling vil vi introducere nogle vaerktgjer og teknikker til at lave formel
verifikation af kryptografisk kode. Et stort fokus for teknikkerne er brugen af Hax og
SSProve.

Vi starter afhandlingen med at beskrive Hax, som er et verktgj, der tager kode
skrevet i en sikker del af Rust og oversetter det til en bevisassistent (ProVerif, F*,
LV3N, EasyCrypt, Rocq, and SSProve). Vi viser derefter nogle eksempler pa, hvordan
man kan bruge SSProve, et kodebibliotek til Rocq, til at bevise den kryptografiske
sikkerhed af Rust-koden, vi har oversat med Hax. Eksemplerne vi kigger pa er
kryptografiske primitiver, protokoller og en smart kontrakt.

Fgrst viser vi at en effektiv implementering af den avancerede krypteringsstan-
dard (AES) ggr det samme som en specifikation og viser implementeringen sikker i
SSProve.

Derefter viser vi sikkerheden af transportlagssikkerhedsprotokollen (TLS). Her
bruger vi flere vaerktgjer til at vise forskellige sikkerhedsegenskaber. Vi bruger
F* til at vise, at TLS koden ikke laver fortolkningsfejl af de modtagne beskeder,
og at koden ikke har fatale fejl. ProVerif bruges til at vise at TLS protokollen
overholder serverautentifikation og den fremadrettede sikkerhed af sessionsngglerne.
Vi gar i dybden med formaliseringen af sikkerhedsbeviset for, hvordan TLS genererer
sikkerhedsnggler.

Til sidst tilfgjer vi muligheden for at bruge Hax til at oversatte smarte kontrakter
skrevet i Rust. Vi bruger dette til at vise at Open Vote Network (OVN)-protokollen
bade er sikker og korrekt.

Afhandlingen slutter af med at sammenligne med andre varktgjer og andre pro-
jekter, og vi diskuterer, hvor vi tenker, man skal fokusere fremtidigt arbejde.

iii

Acknowledgments

I would like to thank Bas Spitters for holding me to a high academic standard. I am
grateful to my support group — Claudio Orlandi, Panagiotis Karras, and Michael
Wessely — for guiding me through stressful times. I would like to thank the Logic and
Semantics research group for letting me join seminars even during my bachelor’s
and master’s and generally being welcoming and friendly people.

I would like to thank Cryspen and Inria for making my stay abroad pleasant.
I especially want to thank Karthikeyan Bhargavan for the collaboration and help
leading up to, during, and after the mandatory research environment change.

Having a dedicated place to relax and do silly things is very important to stay sane; TAGEKAMMERET
is such a place. I especially enjoyed the goofy events and lighthearted chats that took
my mind off work. A heartfelt thanks to the people of Regnecentralen ([[©), the
community around our social student kitchen, for also being a place to relax and talk
with students about everything and nothing. The coffee ping chat (=) provided a
welcome break from work and a chance to discuss challenges with other PhD and
master’s students from outside my research group. I appreciate the computer science
Friday bar, Fredagscaféen (- &), for always being open on Fridays and for having
wonderful people to talk with. I would especially like to thank my “Don’t Panic”
sticky note for keeping me company during late hours at the office. Finally, I would
like to thank family and friends for being a source of joy and positivity.

Lasse Letager Hansen,
Aarhus, 2025-08-31.

Contents

Abstract

Resumé

Acknowledgments

Contents

I Overview

1 Introduction
1.1 Structure of Thesis and Overview of Chapters
1.2 Motivation e e e e

2 Background Theory
2.1 Dependent Type Theory
2.2 Interactive Theorem Provers (ITP)
2.3 Computer-Aided Cryptography
24 Rust

IT Publications

3 Hax: Verifying Security-Critical Rust Software using Multiple Provers

3.1
32

Hax
The Paper
Verifying Security-Critical Software
hax: methodology and Workflow
hax Engine: Transforming and Simplifying Rust Code
hax Backends: Translating Rust to Verifiable Models
Formal Models for Rust Libraries
Testing the Generated Models
Verifying Rust Applications withhax

vi

iii

vi

11
11
13

17

CONTENTS vii

Conclusion and Future Work 42
33 Summary e 46
3.4 The Technical Details of the Rocq Backends 46
3.5 The Annotated Rust Core Library 47
3.6 Creusot i 49
3.7 QuickCheck/QuickChick 50
3.8 Automation: SMT solvers, Hammers, and Large Language Models
(LLMs) . . o 50

4 The Last Yard: Foundational End-to-End Verification of High-Speed

Cryptography 53

4.1 Hacspec i e e 53

4.2 Advanced Encryption Standard (AES) 54

43 ThePaper 61

Introduction L 62
Foundational End-to-End Verification from Specification to Effi-

cient Implementation 64

Background & Technical Preliminaries 66

Hacspec & SSProveo oL 68

Jasmin & SSProve oo 69

AESExample 72

Related Work o 73

Future Work L o 74

4.4 Summary e e e e e 77

4.5 The SSProve Backendof Hax 77

4.6 The Dual Translation of SSProve 77

5 Formal Security and Functional Verification of Cryptographic Protocol

Implementations in Rust 81

5.1 Transfer Layer Security (TLS 1.3) 81

5.2 ThePaper 81

High-Assurance Cryptographic Protocols 82

Methodology: Verifying Rust Code withhax 84

The TLS 1.3 Protocol 85

Bert13: Post-Quantum TLS 1.3inRust 87

Key Schedule Security with SSProve 89

Verifying the Protocol Code with ProVerif 91
Verifying Runtime Safety and Unambiguous Message Formats

withFx .00 93

Discussion 95

5.3 Summary 100

5.4 Details of the Security Proof for TLS 1.3 Key Scheduler 100

viii CONTENTS

6 CryptoConCert: A Framework for Secure Rust Smart Contract Verifi-

cation, with an Application to Voting 115

6.1 Properties of X-protocolso 115
6.2 The Schnorr Protocol oo 116

6.3 The Cramer-Damard-Shoenmaker (CDS) Construction 118
6.4 ThePaper 123
Introduction 124
Background Lo 126
CryptoConCert 131

The Open Vote Network Protocol 132

Ovn Security Proofs 134
Self-Tallyingin Concert 138

Evaluation 140

Related and Future Work 141

6.5 Summary 148

6.6 Maximum Ballot Secrecy - Alternative in SSP Style 148

6.7 Modifications of Implementation 161

7 Related Work 163
7.1 Formal VerificationinRust 163

7.2 Cryptographic Proof Frameworks 167

7.3 CryptoProof Ladders 167

8 Discussion 169
9 Future Work 173
9.1 Extensions to the Work of the Papers 173
9.2 Larger Trends and the FieldasaWhole 173

Bibliography 175

Part 1

Overview

Chapter 1

Introduction

Throughout the thesis we will look at a selection of examples illustrating the goals
and ideas for verifying secure primitives and protocols and programs using these. The
topics throughout the thesis can be seen as separated into the following topics:

* Implementation

* Testing and

* Security Properties and Proof

* Smart Contract and Blockchain

The presentation of the frameworks will be example driven, using the Hax framework,
which allows one to write Rust programs and translate them to a set of backends
(Rocq, SSProve, F*, ProVerif). Thus, we start by introducing Hax and how it can be
used.

For the examples, we will start at the low levels of abstraction. Looking at how to
write primitive specifications in Rust, connect an efficient assembly implementation,
and show security properties of primitives. As an example of this, we show that an
implementation of the advanced encryption standard (AES) in Jasmin adheres to an
AES specification that we have written in Rust. The specification is based on the
National Institute of Standards and Technology (NIST) specification.

Next we will look at how to use these primitives in the construction of protocols
while ensuring the security and correctness of computations. The example we will
use for this is Transport Layer Security (TLS) 1.3.

Finally, we will look at the use of cryptographic primitives in the setting of smart
contracts. The example we will look at is the Open Vote Network (OVN) protocol.

1.1 Structure of Thesis and Overview of Chapters

The first part of the thesis contains background theory and a description of the state of
high-assurance cryptography at the start of the thesis. The second part of the thesis

3

4 CHAPTER 1. INTRODUCTION

is all the papers submitted throughout the thesis. Finally, we will conclude with an
overview of the current state of high-assurance cryptography, related work, a summary
and discussion of the contributions of this thesis, and future work.

The background theory chapter (Chapter 2) will introduce general concepts that
serve as a more detailed introduction to a selection of topics. This is intended to
establish a basis of knowledge for readers with no prior knowledge.

The next section will present the field of high-assurance cryptography and intro-
duce the open problems and existing solutions before the work of this thesis. It is
meant to frame this work and motivate the problems we are trying to solve and how
we are trying to solve them. This further serves as a guide to what we are not trying
to solve and gives a snapshot of the landscape of high-assurance cryptography. This
snapshot will be updated to a more current view in the discussion chapter, where we
place this work in relation to other projects and tools.

We introduce each paper as a separate chapter. Each chapter will start with a
detailed background on the work and the problems it is trying to solve. This will
be followed with a copy of the submitted/accepted version of the paper. Finally, we
expand upon the work. This is done by adding perspective on what alternative proof
and formalization or possible improvements could be made to the tool, artifacts, and
frameworks we introduce. We also place the work on each paper into the broader
effort and goals of the thesis as a whole.

We first present the paper on Hax (see Chapter 3) to introduce the framework used
for writing specifications and implementation of the primitives and protocols used in
the remaining papers. The remaining papers will introduce a framework for doing
different types of formalizations together with an example. We go from low to high
level, thus starting by presenting an end-to-end formalization for an efficient primitive
(AES); see Chapter 4. Next we present the work on verifying cryptographic protocols
(Chapter 5), and finally we present the work on proving security and correctness of
smart contracts (Chapter 6).

Finally, we have the related work (Chapter 7), discussion (Chapter 8), and future
work (Chapter 9) chapters to put the work of this thesis into perspective.

1.2 Motivation

Computers are becoming a universal part of all aspects of society. Almost all bank
transactions are now automated or done online. Communication is done via email or
messaging apps. Even elections are moving to electronic voting, which enables faster
and more precise voting.

As we are transitioning to online and electronic technologies for all these ap-
plications the correctness is becoming very important. The types of attacks are
ever-increasing, as the technologies become more complex. To build high-assurance
software, we thus need techniques, tools, and frameworks for ensuring correctness
and security. A lot of work has already been done for verifying classes of correctness,
resulting in, e.g.,

1.2. MOTIVATION 5

* verified compilers [65]
* static analysis tools [51, 53, 63, 95]

* continuous integration (CI) with fuzzing, unit testing, and property-based test-
ing [27]

* trace-based analysis for reasoning about complex properties and systems [3, 9]

While all of these are a part of producing high-assurance software, some parts of
software require even stronger guarantees, like security. As a voting protocol can be
correctly implemented but still be insecure by leaking people’s votes or allowing
other parties to manipulate the result. Thus, we also need a way to talk about
the specification of protocols and prove security about the implementation of such
protocols. Places where a gap exists include

* the implementation not following the specification
* the specification not being secure, i.e., not guaranteeing the properties we want
* missing security properties

Ensuring these properties are usually done by having the cryptographers, who design
the protocol, prove the specification is secure in some cryptographic model of secu-
rity. Then software engineers implement the protocol and ensure adherence to the
specification. This often builds on test vectors, which are a set of tests describing the
intended output for some given input.

The issue with this process is that there might be mistakes in the cryptographic
proof not caught by reviewers. The implementation might have subtle bugs not caught
by the test vectors, or the implementation might introduce alternative attacks. Thus,
we would want to formally verify the security proof and prove that the implementation
follows the specification, not just test it. In this work, we will use interactive theorem
provers to formally verify these properties in a machine-checkable way. This rules out
issues with the specification. We will also introduce frameworks for using multiple
specialized tools to make this process easier, as doing formal proofs is often very costly
and out of scope for most software. We do, however, reason that for cryptographic
protocols and the part of software with high importance, formal methods should be
applied.

The workshop on high-assurance crypto software (HACS)! has been running for
10 years now, and many successful projects have come from this. These projects have
focused on formalizing primitives and protocols in both the symbolic and computation
models; however, a lot is still to be done for building not only secure and correct
implementations but also efficient and realistic implementations.

"https://www.hacs-workshop.org/

https://www.hacs-workshop.org/

6 CHAPTER 1. INTRODUCTION

The Everest project” [14, 88] is another large-scale verification effort. The project
aims to create protocols and primitives used in the HTTPS ecosystem, making industry-
strength secure drop-in replacements.

We contribute to HACS community and try to push formalization towards real
protocols and efficient implementations.

Zhttps://project-everest.github.io/

https://project-everest.github.io/

Chapter 2

Background Theory

We will start by introducing some general background about interactive theorem
provers, computer-aided cryptography, and Rust. This will lay the foundations to
understand the topics in the rest of the thesis. Whereas any theory more specifically
related to a paper will be introduced in the relevant chapter.

2.1 Dependent Type Theory

We start by introducing dependent type theory [2, 94], which is the basis for most
formal proofs, tools, frameworks, and techniques.

Curry-Howard Correspondence

Haskell Brooks Curry and William Alvin Howard have observed [34, 35, 52] a relation
called the Curry-Howard correspondence, which states that proofs and computations
are two sides of the same coin. That is, for any model of computation (e.g., Turing
machines, A-calculus, etc.), there is a logic system (e.g., intuitionistic logic, type
theory, etc.) for which it coincides.

The constructive interpretation that a proof of a proposition is regarded as true only
if it is possible to construct a proof of its parts [92], originally posed by Luitzen Egber-
tus Jan Brouwer and Arend Heyting [49], and Andrey Nikolaevich Kolmogorov [62],
is known as the Brouwer—Heyting—Kolmogorov interpretation.

The description of these ideas is also collected under the propositions as types
paradigm, which states that propositions are types. This is the basis we will use for
formally reasoning about proofs, as we can build on these ideas and observations to
use, e.g., A-calculus as a framework for doing constructive proofs, as it has a direct
correspondence with type theory.

Church-Turing Thesis

Another influential result, derived from the work of Alonzo Church and Alan Turing,
is the Church-Turing thesis [24-26, 93], which states that simply typed A-calculus and

9

10 CHAPTER 2. BACKGROUND THEORY

Turing machines are equally expressive, i.e., equivalent to general recursive functions.
Said in another way, general computation can be modeled by both Turing machines
and A-calculus, among others. Thus, there are many different ways to build a system
of computations, which, given the above results, can be used to construct proofs. We
can therefore reason about general computation, e.g., what happens in a real computer,
using the more abstract mathematical formulations like A-calculus. Furthermore,
since code and proofs are strongly connected, we can use a programming language to
reason about proofs and a proof framework to reason about code.

Martin Lof Type Theory (MLTT)

Martin Lof Type Theory (MLTT) [2, Appendix A; 68; 94, Chapter 1] builds a depen-
dent type theory, which can be used as an alternative to standard Zermelo—Fraenkel
(ZFC) set theory [40, 41, 54, 98].

In a dependent type theory, we state lemmas and theorems as types, and prove them
by constructing a term/element of the given type. The type theory being dependent
means we allow types to depend on other terms or types. From the Curry-Howard
correspondence we can build a programming language or calculus for reasoning about
such proofs.

Calculus of Inductive Construction (CIC)

A version of MLTT is the Calculus of Inductive Construction (CIC) [32, 78], which
is a constructive foundation for mathematics that can be used as a dependent typed
programming language. It is a higher-order typed A-calculus and is part of the A-cube
(upper top right part AC), which classifies different type theories and their theoretic

Lo AC
e /
A2 AP2
A‘w —————————— > AP®
/ /
A~ AP

Figure 2.1: Lambda Cube
dependent types (—), polymorphism (1), type binding ()

strengths. Thus, CIC can be used for formalizing mathematical proofs. Furthermore,
interactive proof assistants (like Rocq and LVIN) have been built on top of this theory.

2.2. INTERACTIVE THEOREM PROVERS (ITP) 11

2.2 Interactive Theorem Provers (ITP)

There have been multiple examples of mathematical results being wrong. Even
results, which have been rigorously peer reviewed and accepted at high-prestige
conferences. Furthermore, as computers and automation techniques are getting
better, proof automation is a topic of increasing interest. This has led to the field of
constructive mathematics and the introduction of interactive theorem provers (ITP).
Constructive mathematics is a way of writing mathematical proofs and statements in a
way that the proof can be algorithmically constructed. Interactive theorem provers
are then a way of writing these mathematical proofs such that a computer validates
the correctness while giving the user feedback. This enables automation and strong
guarantees.

The core of the system is a type checker, which validates that terms are of the
correct type. This is used to show that we have a proof (the term) for some statement
(the type) and can be seen as an example of the Curry-Howard correspondence, as we
can complete proofs using code and tactics. A full system can then be built around
the rather small core of a type checker.

An example of an interactive theorem prover is the Rocq proof assistant (formerly
known as Coq) [31, 76, 91]. It builds on the Calculus of Inductive Construction (CIC).

Another example of a theorem prover is F* [85, 86, 90]. It is a dependently typed
programming language, which does not build on CIC; instead, it uses SMT solvers
to discharge proof obligations. The trusted core of F* is larger than that of more
rigorous systems; however, it is still based on a sound foundation but with a focus on
automation, allowing it to scale to large and complex code bases.

2.3 Computer-Aided Cryptography

In this section we will introduce some different types of computer-aided cryptography.
We start with computational and constructive cryptography [73], explaining state
separating proofs [21] and a brief introduction to the Joy of Cryptography book [81],
which teaches this style of cryptographic proofs. Some of these descriptions will be
repeated in Subsection 2.4 of the OVN paper. Next, we introduce the symbolic (or
Dolev-Yao) model [37] of cryptography. Finally, we describe some of the common
assumptions and models used in cryptographic proofs.

The Computational Model of Cryptography

The computational model [72], also known as the standard model, requires one to
prove security against a pretty strong adversary. The adversary has access to the
implementation of the primitive or protocol. Furthermore, the adversary is allowed
to do any polynomial amount of work based on the security parameters. Thus,
the security needs to scale super polynomially (e.g., exponentially) in the security
parameter, such that a value for the security parameter can always be found, ensuring
security against current adversaries.

12 CHAPTER 2. BACKGROUND THEORY

Constructive Cryptography

Constructive proof theories state that proofs should be constructible; that is, one needs
to give some algorithm or construction to build the proof. Thus, if there are any
existential statements, one should also be able to exemplify those. The strength of
constructive proofs is that they can be machine checked and even automated to some
point. The field of constructive cryptography [73] builds on similar ideas, focusing on
the excitability and constructability of cryptographic proofs.

State Separating Proofs (SSP)

A framework for doing constructive proofs is the state-separating proof framework [21].
To ensure the framework is constructive, it uses the fact that cryptographic primitives
and protocols can be defined by code. An SSP proof then proceeds by taking the code
and splitting it into modular parts called packages. A package can then be shown
to be observationally equivalent to another package. That is, an adversary cannot
distinguish the behavior of using one or the other. We call such a pair of packages
a game if they have no dependencies and define the same functionality. This allows
us to swap one package for another, also known as a game jump. The goal is then to
build a sequence of game jumps to connect the real implementation of a protocol with
an ideal behavior of the protocol.

The Joy of Cryptograpy

Similarly to SSP, the Joy of Cryptography book [81] uses a framework for reasoning
about constructive cryptography in a modular style. The goal of the Joy of Cryptog-
raphy is to teach cryptography consistently. Proofs use a reduction-based reasoning
style, where we want to prove the security of the full package. Sometimes this means
showing security of parts (libraries), as is done in SSP; other times the focus is on
reasoning about the equivalence in the output distributions.

The Symbolic Model of Cryptography

In the symbolic model, also known as the Dolev-Yao model [37], of cryptography,
the adversary no longer has access to the inner workings of the algorithms. Rather,
the adversary can read, create, block, or change messages. Thus, we look at the
algorithms as a form of black box that might leak information. This gives a symbolic
model allowing for stronger techniques to be applied, making it easier to formalize
larger protocols, at the cost of some fine grained details. Tools for this model can
show that a protocol follows some guarantees or produce a counterexample showing
the protocol is broken.

Assumptions of Cryptography

A primitive that is used a lot in modern cryptography is hashing. Cryptographic
hashing takes a value as input and produces a (possibly smaller) output. The hope

2.4. RUST 13

is that given this output, it is hard to find the input, but given an input, it produces a
deterministic output, i.e., inputting the same value twice will give the same output.
This is very useful, as true randomness is very hard to come by.

The random oracle model [11] assumes the existence of an oracle that, given a
fresh input, produces a uniformly random output; however, given an already seen
input, produces the same value. Usually, this random oracle is instantiated with a
hashing function, even though there is no proof that it is truly random.

2.4 Rust

In this section we will give an introduction to the philosophy and language features of
the Rust programming language [59, 60, 69].

Types

We will start by giving an account of the types in Rust [82] to form a basis for
discussing the language features. Rust supports primitive types:

e Booleans (bool),

* numerics — integers (u8, i8, ..., u128, 1128) and floats (£32 and £64),
* textual — char (chr) and string (str), and

e never (!).

The never type is used to represent infinite computations; that is, a type without a
value, thus not allowing for returns.

These primitive types can be grouped using tuples, arrays, and slices. Tuples
allow one to group 0 or more things of different types together. The size of a tuple is
given directly in the type, e.g., if we want to return 2 Booleans and a string, then the
type would be (bool,bool, str). Tuples are also allowed of size 0, representing the
unit type, which only has a single element ().

Arrays are a specific-sized grouping of the same type; e.g., a five-element-long list
of u8 would be [u8;5]. Thus, the size of both tuples and arrays is known at compile
time.

In contrast, we have dynamically sized lists, known as slices. These have the same
syntax as arrays, but without a size, e.g., [u8]. We can combine these sequence types
to make arrays of tuples, or slices of arrays, or whatever anyone can dream up.

Rust has structs similar to those in C. This allows one to combine types into a
named user-defined type. For example:

struct Foo {
foo : u8,
bar : (str, bool),
baz : [f64; 12],

}

14 CHAPTER 2. BACKGROUND THEORY

To construct a struct, one needs to construct all the parts and instantiate the named
fields. The values can then be updated or projected out of the struct as needed. Thus,
structs are a way to organize and structure the types.

Rust also supports enums to enable inductive reasoning, which comes to expression
in the combination with the pattern matching functionality of Rust. The goal is to
support full algebraic data types; however, this is not yet fully supported. Enums
currently allow one to define possible cases for a type. For example:

enum Foo {

Bar,

Baz(u8, str, baz),
}

Rust also supports unions, which are a lot like structs, also sharing the syntax, but
using union instead of struct. However, all fields in a union share the same memory.
Unions should, therefore, be seen as an optimization tool for accessing parts of a
common data type and combining different structures with possibly overlapping
values.

Next, we have the low-level types for working with the operating system. These
are references, raw pointers, and function pointers. Raw pointers are the memory
pointers used by the operating system and thus are generally unsafe to use and
manipulate. This is reflected by the Rust requirement to explicitly declare code that
does this unsafe. Similarly, function pointers are used for enabling a more functional
style of coding.

Function pointers can be given to, e.g., map or fold functions. Having function
pointers as objects also allows us to define anonymous functions (also known as
lambda functions), enabling functionality like callback functions.

One of the main ideas of Rust is the use of references. In Rust having a reference
to an object implies ownership of that object. There are two types of references: a
shared reference (&) for reading the value of an object and a mutable reference (&mnut)
allowing for modification of the object. Allowing the user to access and use references
ensures the ability to construct efficient code on par with C. By controlling the access
patterns or ownership model, Rust ensures memory safety without the use of a garbage
collector. This is achieved by having the owner of an object be responsible for clearing
the memory use of that object. Thus, if the owner of an object goes out of scope, that
object will also be removed. This mechanism is captured by the Rust borrow checker.

To properly define and use function pointers, Rust allows one to define function
types and closures, which describe the input and output types together with how the
elements and memory are captured. General functions in Rust can be defined over
generic values and trait implementations; however, a function pointer must be fully
instantiated.

The final tool in Rust to help structure code is the trait system. Traits are a
collection of generalized functions and types, which allows one to create an abstract
model of some behavior. These traits can then be implemented for some given types.
One of the selling points of the Rust trait system is that

2.4. RUST 15

* implementation for external traits can only be done for types defined in the
current crate;

» implementation for external types can only be done for traits defined in the
current crate.

These properties ensure the predictability of crate inclusions, in that including an extra
crate cannot break existing functionality.

Control Flow

Rust allows for basic as well as more complex control flow [82]. Using branching,
repetition, and early returns, maintain the safety of lifetimes, borrowing, and memory.

Unsafe Rust

When Rust wants to interact with the operating system, it calls out of its encapsulated
workflow with all its guarantees. Thus, this might cause undefined or unintended
behavior. To make this unsafety explicit, Rust uses the unsafe keyword. There is an
entire book, the Rustonomicon [89], explaining the correct use of unsafe and where
and why it is necessary. Some discussion of tools and projects related to ensuring
correctness of unsafe code can be found in §7.1.

Part 11

Publications

17

Chapter 3

Hax: Verifying Security-Critical
Rust Software using Multiple
Provers

We first introduce the subset of the Rust programming language that is supported
by Hax. Then we give some additional background knowledge related to the Hax
framework. We then give an overview of the Hax paper [15], followed by the paper in
full. Afterwards we summarize the paper and extend the description of the annotated
core library and discuss how to combine Hax with other tools and automation.

3.1 Hax

Hax is a tool that takes Rust code and translates it into a selection of tools and backends.
The reason to do this is to formally reason about the correctness and safety of the
code. Hax currently supports a large subset of Rust. Since this subset is described in
most papers, we will give a detailed and combined description here. Thus, the Hax
section in the other papers can be skipped for brevity.

The Hax Subset of Rust

We will describe the Hax subset of Rust by going over the language features described
in §2.4. We start with the types. Hax supports all the basic types of Rust, e.g.,
Booleans, numerics, textuals, and the never type. However, for most high-assurance
applications, textuals are rarely used. Furthermore, few of the Hax backends support
non-termination, so the never type is not that relevant.

Hax represents structs and enums as a combined type representing algebraic data
types. The types are modeled by records and inductive types, respectively, in most
of the backends. Unions are semantically very close to structs; however, Hax does
not handle the memory model of Rust. Therefore, unions are currently not handled
by Hax but are represented in the input to the Hax framework. This also means raw

19

20 CHAPTER 3. HAX

pointers are not translated. There is some support for function pointers and mutable
references; however, the more advanced functionality is not yet handled. Hax does
support closures and lambda functions, which allows us to write Rust code using the
functional paradigm.

Hax supports traits; however, these are translated into type classes in most back-
ends. This results in some of the more advanced features of traits not being translat-
able.

Specification

The translation of the Rust code starts by hooking into the (typed) higher intermediate
representation (THIR) and extracts the terms (as JSON). Next the entire code is
structured into an Abstract Syntax Tree (AST).

The AST encodes features to be used in all transformations done to map it to the
different backends. This is done by having the AST be defined over a feature set,
which can enable and disable different types. The backends then accept a specific
combination of features, which is a result of a series of reduction phases. The surface
AST can represent the following features:

* Loops (for, for-range, while, loop),

* Traits and implementations,

* Mutable variables, and

* Type definitions (enums, structs, unions).

The phases then transform the AST; most of the proof assistants support a functional
feature set with bounded recursion and no mutable variables. We add phases that
panic if anything not allowed is encountered, thus restricting the translation. Writing
code in the Hax subset is therefore not entirely like writing Rust, but the differences
are small, especially for the use cases examined throughout the papers of this thesis.
For more details see the paper following §3.2.

Hacspec

The domain of cryptography and general algorithmic specifications rarely requires
the advanced features of Rust. Thus, by further restricting the Hax subset, we can
define a specification language, which ensures simplicity and correctness. Since such
a specification would still be in the Hax subset, we can translate it into the different
backends of Hax. Thus, we achieve executable specifications with simple semantics
that can be formally verified as correct. Any efficient implementation can then be
tested and verified against the specification. For more on this methodology, see §4.1
or, more generally, Chapter 4.

As part of the Hacspec project [7, 74], a constant-time library was built for
simplifying the specification of constant-time primitives and protocols. Having a

3.2. THE PAPER 21

common set of libraries used for writing executable specifications would benefit the
high assurance community greatly.

3.2 The Paper

The work on Hax originates from the Python implementation of Hacspec [74]. The
further development of a high-assurance cryptography library, libcrux, and the Hac-
spec specification language was presented [58] at the Real World Crypto (RWC’23)
Symposium. The introduction of Hax as a framework and explanation of further
improvements was presented [16] at RustVerify. A full paper on the current version of
Hax is accepted at Verified Software: Theories, Tools, and Experiments (VSTTE’24).
This paper is accompanying the invited talk of Karthikeyan Bhargavan (co-author) at
VSTTE’24. The following pages will contain the paper in full [15], after which we
will summarize the content of the paper and frame its relevance in §3.3.

)

Check for
updates

hax: Verifying Security-Critical Rust
Software Using Multiple Provers

Karthikeyan Bhargavan!®) @, Maxime Buyse!, Lucas Franceschino?,

Lasse Letager Hansen?®, Franziskus Kiefer!, Jonas Schneider-Bensch!,
and Bas Spitters?

L Cryspen, Paris, France
karthik@cryspen.com
2 Aarhus University, Aarhus, Denmark

Abstract. We present hax, a verification toolchain for Rust targeted at
security-critical software such as cryptographic libraries, protocol imple-
mentations, authentication and authorization mechanisms, and parsing
and sanitization code. The key idea behind hax is the pragmatic obser-
vation that different verification tools are better at handling different
kinds of verification goals. Consequently, hax supports multiple proof
backends, including domain-specific security analysis tools like ProVerif
and SSProve, as well as general proof assistants like Coq and F*. In this
paper, we present the hax toolchain and show how we use it to translate
Rust code to the input languages of different provers. We describe how
we systematically test our translated models and our models of the Rust
system libraries to gain confidence in their correctness. Finally, we briefly
overview various ongoing verification projects that rely on hax.

1 Verifying Security-Critical Software

A software component is deemed security-critical if any bug or design flaw in it
could be exploited by an attacker to break the security of the larger system it is
a part of. This definition generally includes any code that performs operations
whose inputs are partially or completely controlled by the adversary, such as
code that processes packets received over an untrusted network, or code that
handles an unauthenticated API call. An attacker may use the public-facing
interfaces of such components to craft inputs that cause memory errors, break
internal code invariants, bypass security mechanisms, and steal secrets through
public interfaces or covert side-channels.

Modern software applications typically rely on a number of security-critical
components, such as cryptographic libraries, protocol implementations, pars-
ing and sanitization code, authentication and authorization mechanisms, etc.
For example, every Web application relies on an implementation of the Trans-
port Layer Security (TLS) protocol [42], which contains cryptography, protocol
state machines, message parsing, and X.509 certificate-based authentication. All
of this code becomes part of the trusted computing base of the application, and
any bug in this code typically result in a high-profile vulnerability and expensive
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

J. Protzenko and A. Raad (Eds.): VSTTE 2024, LNCS 15525, pp. 96-119, 2025.
https://doi.org/10.1007,/978-3-031-86695-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-86695-1_7&domain=pdf
http://orcid.org/0000-0002-3152-8997
http://orcid.org/0000-0003-3271-3593
http://orcid.org/0000-0002-2802-0973
https://doi.org/10.1007/978-3-031-86695-1_7

hax: Verifying Secure Rust Software 97

security updates. Consequently, this kind of code is usually separately audited by
security experts and comprehensively tested and fuzzed before being deployed.

Formal Verification: Challenges. Given the high cost of failure, security-
critical software components would, in principle, be excellent candidates for the
high levels of assurance provided by formal verification and machine-checked
proofs, but they come with their own unique challenges.

First of all, many security-critical components need to operate with high
privileges, e.g. within operating system kernels or deep within web servers, so
that they can have direct access to network buffers or to internal security mech-
anisms. Furthermore, they need to execute efficiently with minimal overhead,
both in terms of processing time and memory usage, so that the attacker cannot
overwhelm the system with junk inputs. For both these reasons, security-critical
components are typically written in low-level languages like assembly or C with
many platform-specific optimizations for different target architectures.

Second, these components often build upon advanced cryptographic mech-
anisms and protocols that require significant domain expertise to program
and to analyze. Cryptographic algorithms rely on efficient implementations of
mathematical structures like elliptic curves and lattices that are heavily opti-
mized using single-instruction multiple data (SIMD) parallelization on different
platforms. Protocol implementations embed complex state machines that inter-
leave cryptographic operations with network actions and parsing code.

Consequently, to verify (say) a typical implementation of TLS, we need tools
that can handle a wide range of tasks: we need to prove that its low-level assembly
or C code is memory safe, that it is functionally correct with respect to some
high-level mathematical specification, and that it meets its security goals against
the class of attackers defined by its threat model. Although many verification
tools have been developed to address subsets of these tasks, no single tool is
suited to handle all of them and verifying large, complex systems remains a big
challenge.

Formal Verification: Approaches. A whole field of study, sometimes called
computer-aided cryptography [9], is devoted to the formal analysis of crypto-
graphic designs and implementations, using both general-purpose software ver-
ification tools and domain-specific proof tools like symbolic protocol analyz-
ers [11,15,18] and computational cryptographic provers [7,10,14,27].

The most successful projects in this area build customized tools for different
proof tasks and link them within a single verification framework. For example,
the F* verification framework [43]| has been used to implement the HACL* ver-
ified cryptographic library [46], to build verified zero-copy binary parsers [41],
and to perform cryptographic security proofs for a TLS implementation [20]. The
code for all of these is written in a carefully designed subset of F*, verifies using
custom proof libraries, and then compiled to low-level languages like C [40]
and WebAssembly [39]. Similar projects link verified cryptographic assembly
code written in the Jasmin language [3] with high-level security proofs in Easy-
Crypt [10], or verified C code in Coq [23] with security proofs in SSProve [27],
or verified JavaScript code with proofs in ProVerif and CryptoVerif [13].

98 K. Bhargavan et al.

Code verified using some of these projects have been widely deployed in main-
stream software projects like Google Chrome, Mozilla Firefox, Linux, Python,
WireGuard, etc. However, the key to their success, and also their main limita-
tion, is that they are self contained and do not attempt to verify code written
by programmers. Instead, all these projects target code written by verification
researchers that are then compiled to C or assembly code that can be deployed
by regular software developers who never have to see the proofs. Furthermore,
the verification itself relies on deep expertise in the tools used and often takes
years of effort by teams of researchers. So, while these projects show what can
be done, their methods cannot scale to real-world projects driven by developers.

A key roadblock is that although several frameworks are capable of formally
verifying security critical C, e.g. [5,32], and assembly, e.g. [3,16,38|, however
much of the time and effort for verification is usually spent in proving properties
like memory safety, leaving little appetite for verifying higher-level correctness
and security guarantees. Furthermore, even if one such component is fully veri-
fied, the lack of memory safety and isolation in the overall system means that any
bug in another (seemingly non-security-critical) C or assembly component can
break all our carefully obtained verification guarantees, by accidentally reading
or overwriting the memory used by the verified code.

hax: Verifying Secure Rust Code. The advent of memory-safe systems-
oriented languages like Rust has made it possible to write high-assurance high-
performance code where memory safety for large swathes of code is automati-
cally ensured by the compiler itself, allowing the programmer and reviewer to
focus on higher-level properties of the code. For this reason, Rust is starting to
be used in many modern security critical projects!, operating systems?, and web
browsers®. Governmental organizations [1], research institutions?, and industry
bodies® all now heavily promote the use of memory safety languages like Rust.

There is also a vibrant community of formal verification tools for Rust code [6,
21,24,29,33,37,45]. Several of these tools explore the edges of the memory safety
guarantees of Rust, such as unsafe code blocks and panic freedom. Many tools
also support functional correctness reasoning via model checking or SMT solvers
or general proof assistants. As yet, none of these tools support security analysis
of cryptographic applications. Furthermore, all these tools are still relatively
young and only time will tell which techniques will be most effective on real-
world software.

In this paper, we present hax, a verification framework targeted towards
the formal verification of security-critical Rust software. The development of
hax began with hacspec [34], a domain-specific subset of Rust for writing and
analyzing specifications of cryptographic algorithms. Over time, hax has evolved

! https://cryptography.rs/.

2 https://docs.kernel.org/rust /index.html.

3 https:/ /security.googleblog.com /2023 /01 /supporting-use-of-rust-in-chromium.
html.

* https://www.darpa.mil/program /translating-all-c-to-rust.

5 https:/ /www.memorysafety.org/.

https://cryptography.rs/
https://cryptography.rs/
https://cryptography.rs/
https://docs.kernel.org/rust/index.html
https://docs.kernel.org/rust/index.html
https://docs.kernel.org/rust/index.html
https://docs.kernel.org/rust/index.html
https://docs.kernel.org/rust/index.html
https://docs.kernel.org/rust/index.html
https://docs.kernel.org/rust/index.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.darpa.mil/program/translating-all-c-to-rust
https://www.memorysafety.org/
https://www.memorysafety.org/
https://www.memorysafety.org/
https://www.memorysafety.org/

hax: Verifying Secure Rust Software 99

to support the development, specification, and verification of implementations
of more general security mechanisms written in idiomatic Rust.
The key features that drive the design of hax are:

— Support for multiple provers, including general-purpose proof assistants
and security-oriented analyzers for cryptographic code;

— Formal specifications for correctness and security embedded within the
source Rust code and translated to each proof backend;

— Formal Rust library model written and specified once in Rust and trans-
lated to each proof backend;

— Programmer-driven verification that allows the Rust programmer to
embed lemmas, annotations, and proofs within the Rust code and keep them
consistent as the code evolves;

— Translation validation via testing which allows the programmer and ver-
ification engineer to execute and test both the Rust code and the generated
models in various backends to gain assurance in the correctness of the hax
engine and library models.

In particular, hax does not promote a single verification framework and instead
makes it easy to add new proof backends for different target domains. At the
same time, hax takes charge of the technical tasks of processing and simplifying
the input Rust code, modeling the Rust standard libraries, and providing an
integrated development and verification environment for Rust developers that
scales.

2 hax: Methodology and Workflow

Figure 1 depicts the high-level architecture of the hax framework. The program-
mer provides a Rust crate containing some code and a formal specification for the
code written as pre- or post-conditions, invariants, assertions, or lemmas within
the source code. The user would typically also provide tests that can be run on
the code. When this crate is compiled, the Rust compiler translates the Rust
code to assembly, links it with the Rust standard library and any other external
crates the user may rely on, and produces an executable that runs the tests.

The first phase of the hax toolchain is the hax frontend, which plugs into the
Rust compiler and uses it to parse and typecheck the source Rust code before
producing a fully annotated abstract syntax tree (AST) for the crate as a JSON
file. The frontend is capable of producing both the Typed High-Level Interme-
diate Representation (THIR) and the Mid-Level Intermediate Representation
(MIR) of Rust. Since the Rust compiler and its internal data structures evolve
fairly rapidly, the frontend takes on the responsibility of keeping track of com-
piler changes while producing a stable AST that other tools can use. As a result,
the hax frontend is an independently useful tool and is also used by other Rust
verification frameworks like Aeneas [28].

100 K. Bhargavan et al.

user code rust libraries
Specification

| Tests ’ Code Module stdlib L Tests

] (rust) ;P (rust) (rust,C,asm)] (rust)
P Fommmme e

AN [/ . ,’
hax stdlib
(rust)

hax frontend (parsing and typechecking)

(rust) (rust) (json)

l

hax engine (transforming via phases)
hax AST 1 hax AST 2 coe hax AST N
(ocaml) (ocaml) (ocaml)

hax backends (generating models)

hax AST N b—v code model

F* or Coq or ProVerif or SSProve

Rust AST THIR AST ‘ hax AST
|

stdlib model | model tests

Bug in hax fqil) \\\ fail Egtezitﬂi PGEIC,
translation «——< Test < Verify N rrectness bug,
or stdlib model / AN e or security flaw
AN S in user code
A N
proof l

Correctness or Security Theorem
Fig. 1. hax architecture

The second phase is the hax engine, which imports the Rust THIR AST for a
crate and transforms it via a sequence of phases to a simplified AST that can be
directly translated to the input languages of various backends. We will describe
some of these phases in Sect. 3.

In the final phase, hax passes on the simplified program to the backend chosen
by the programmer. For example, if the programmer chooses F*, the F* backend of
hax will generate a purely functional model of the source Rust code and its spec-
ification in F*. This model is then linked with F* models of the Rust standard
library (and any other external crates) and can be verified for panic freedom and
functional correctness against the high-level specification. Completing the proof
may require additional annotations, such as loop invariants, or calls to mathe-
matical lemmas. A verification failure may indicate an incomplete proof or a bug
in the source code. Other proof backends, such as ProVerif, are completely auto-
mated and will either verify the code to produce a security theorem, or generate
a counter-example. We describe our current backends in Sect. 4.

hax: Verifying Secure Rust Software 101

We use hax to translate not just the user code, but also handwritten abstract
models of the Rust standard library from Rust to various backends. This allows
us to model the library once and automatically obtain consistent models for
each backend. Modeling the Rust standard library is an incremental, continuous
community-driven process. We currently support a few commonly-used libraries,
and allow the programmer to extend the library either in Rust or directly in
their chosen backend. More details on our model of the Rust libraries are given
in Sect. 5.

Our goal is for all these translations in the hax engine and backends to be
well-documented and auditable, but we notably do not yet provide formal guar-
antees for their correctness, which would require us to formalize the semantics
of the source Rust and each target language in a proof framework. Instead, we
aim to provide pragmatic guarantees based on testing. The generated code for
some backends (such as F* and Coq [44]) is executable, so we can compile the
tests from the source code to the proof backend and run them to check that the
input-output behavior is the same. This gives us additional confidence in the
translation and in our model of the Rust standard library. We describe this
testing strategy in Sect. 6.

Several projects are using hax to formally verify real-world software. We
briefly mention some of these projects in Sect. 7.

The hax project is developed as a community-driven open source project and
all our code, libraries, and examples are available online at:

https://github.com /hacspec/hax

3 hax Engine: Transforming and Simplifying Rust Code

The hax engine takes as its input the AST produced by the frontend, which
is close to the Rust THIR AST, except that all types, trait information, and
attributes are inlined. It then performs a series of passes on this AST, called
phases, that transform the Rust code to a simplified form that is suitable for
translation to a proof backend.

3.1 Input Rust AST

Fig. 2e presents the input AST in extended Backus-Naur form (EBNF). This
figure captures the syntax of Rust as received by the hax engine from the fron-
tend. It includes all the familiar constructions from Rust, but does not include
features like macros that are eliminated by the Rust compiler.

Literals (1iteral) include strings, integers, booleans, and floating point num-
bers (although most of our backends do not have any support for floats).

Types (ty) include the Rust builtin types: characters, strings, booleans, inte-
gers (of size 8, 16, 32, 64, 128 bits or pointer-sized), and floats (16, 32, or 64 bit).
They also include composite types such as tuples, fixed length arrays, variable

https://github.com/hacspec/hax
https://github.com/hacspec/hax
https://github.com/hacspec/hax
https://github.com/hacspec/hax
https://github.com/hacspec/hax

102 K. Bhargavan et al.

string ::= char*
digit [0-9]

uint digit+

int ::= ("-")? uint

float int (".")? uint

bool ::= "true" | "false"

local_var ::= ident

global_var ::= rust-path-identifier
literal ::=

| "\"" string "\""
| "»" char "’"

| int

| float [d]

| bool

generic_value ::=
| " ident

| ty

| expr

goal ::=
y =

"bhool"
"char"

"ug8" | "ulé" | "u32" | "ued"

"ul28" | "usize"

nig" | "i1e" | "i32" | "ig4"

"E1G" | "£32" | "fE4M [d

" "

str
(ty D™
nn ty ";" int nyn
nn ty nn

"sxconst" ty | "smut" ty [a]

"+" expr | "#mut" expr [a]
ident
(ty "->")* ty

t
|
|
|
|
|
| "i128" | "isize"
|
|
|
|
|
|
|
|
|
| dyn (goal)+ [d]

pat =

| H7H

| ldent II{YI (1dent " R n pat " : IY)* YI}H
| ldent " (II (pat " s rl)* H) n

| (pat "[")* pat

| H[H (pat vv’n)* H]u [b]

| "&" pat

| literal

| ("&")? ("mut")? ident ("Q" pat)? [c]
modifiers ::=

| nn

| "unsafe" modifiers

| "const" modifiers

| "async" modifiers [a]

guard ::=

| "if" "let" pat (":" ty)? "=" expr

expr ::=
| "ifn expr "{" expr "}" ("else" "{" expr npny?
| "if" "let" pat (":" ty)? "=" expr "{" expr "}" (

melse" "{" expr npny?
expr (e (expr Y%)

|
| literal
| "[" (expr ",")* "]" | "[" expr ";" int "]"
| ident "{" (ident ":"expr ";")x "}"
| ident "{" (ident ":"expr ";")* ".." expr "}"
| "match" expr guard "{"
(""" pat)* "=>" (expr "," | "{" expr "}"))*
VI}H
| "let" pat (":" ty)? "=" expr ";" expr
| "let" pat (":" ty)? "=" expr "else" "{" expr "}"
""" expr
modifiers "{" expr "}"
local_var
global_var
expr "as'" ty

"loop" "{" expr "}" [e]

"while" "(" expr ")" "{" expr "}" [e]

"for" "(" pat "in" expr ")" "{" expr "}" [e]
"for" "(" "let" ident "in" expr ".." expr ")" "{
" expr "}" [e]

"break" expr

|

| "continue"

| pat "=" expr

| "return" expr

I expr II'?II

| "g" ("mut")? expr [c]

| "&" expr "as" "gconst _" [a]
| "&mut" expr "as" "&mut _"

I " | " pat n ‘ " expr

impl_item ::=

| "type" idemt "=" ty ";"

| modifiers "fn" ident ("<" (generics ",")* ">")?

n(n (pat gy D I KN G ty)? nn expr nyn

trait_item ::=

| "type" ident ";"

| modifiers "fn" ident ("<" (gemerics ",")x ">")?
"t (pat Mitogy ML) D (it oty)? (U{" expr "}

[

item ::=

| "const" ident "=" expr

| "static" ident "=" expr [a]

| modifiers "fn" ident ("<" (gemerics ",")* ">")?
" (pat "oty ML)x) (Uit ty)? "{" expr "}

| "type" ident "=" ty

| "enum" ident ("<" (generics ",")* ">")? "{" (
ident ("(" (ty)* ")")7 ",")* "}

| "struct" ident ("<" (gemerics ",")* ">")? "{" (
ident ":" ty ",")* "}

| "trait" ident ("<" (gemerics ",")* ">")?7 "{" (

trait_item)* "}"
| "impl" ("<" (generics ",")* ">")? ident "for" ty
"{" (impl_item)* "}"
| "mod" ident "{" (item)* "}"
I Huseﬂ path n ; n

Fig. 2. hax Input Rust AST in EBNF. (a) no support yet for raw pointers, async/await,
static, extern, or union types.(b) partial support for nested matching and range pat-
terns.(c) partial support for mutable borrows.(d) most backends lack support for
dynamic dispatch, floating point operations.(e) some backends only handle specific
forms of iterators.

hax: Verifying Secure Rust Software 103

length slices, function types, and named types defined by enums and structs. We
currently do not support raw pointer types or dynamic dispatch.

Patterns (pat) allow matching over the supported types: wildcards, liter-
als, arrays, records, tuples etc. with some limitations in the support for nested
patterns and range patterns.

Expressions (expr) include literals, variables, type conversions, assignments,
array and type constructor applications, and control flow expressions such as
conditionals, pattern matches, loops, blocks, and closures. They also include ref-
erencing, dereferencing, mutably borrows, and raw pointer operations, although
the engine currently does not support raw pointers and only offers limited sup-
port for mutable borrows. Specifically, we do not currently support user-written
functions that return mutable borrows. Although the engine can handle any kind
of loop expression, many of our backends (e.g. ProVerif) have very limited sup-
port for loops and so the backend code may impose restrictions on the forms of
loops it will accept.

Items (item) are the top-level construct in a module and include constants,
function definitions, type definitions, trait definitions, trait implementations,
modules, and imports. We do not support global static pointers, and we do not
model the asynchronicity of async functions.

A Rust crate consists of a set of (potentially mutually-recursive) modules,
each of which consists of a list of items. A crate may refer to external crates
and to the Rust standard library. The engine treats each crate independently: to
analyze the crate, we assume that all its dependencies have either been translated
or have been modeled by hand for the target backend.

3.2 Transformation Phases

A phase is a typed transformation of AST items: each phase takes a typed
AST representing a Rust crate and produces a new typed AST after rewriting
some items. The full list of phases implemented by the engine is documented in
the source code®. Here, we focus on the most important transformations imple-
mented by sets of phases:

— Order and Bundle Items and Modules. Rust offers programmers a high
degree of flexibility in referencing code and items within and across mod-
ules. For example, an item can refer to another item that appears later in
the module, or an item within any other module or crate. One can define
mutually recursive functions within modules and across modules, but even
without recursion, there may be cyclic dependencies between modules. Con-
versely, most backend proof languages (including all the ones we currently
support) allow these kinds of dependencies. Consequently, the engine imple-
ments phases that reorder and bundle mutually recursive items so that every
item’s dependencies occur before it in the AST. For modules with cyclic
dependencies, the engine breaks the cycle by creating a big bundled module
with the contents of all the modules in the cycle.

5 https://hacspec.org/hax/engine/hax-engine/Hax _engine/Phases/index.html.

https://hacspec.org/hax/engine/hax-engine/Hax_engine/Phases/index.html
https://hacspec.org/hax/engine/hax-engine/Hax_engine/Phases/index.html
https://hacspec.org/hax/engine/hax-engine/Hax_engine/Phases/index.html
https://hacspec.org/hax/engine/hax-engine/Hax_engine/Phases/index.html
https://hacspec.org/hax/engine/hax-engine/Hax_engine/Phases/index.html
https://hacspec.org/hax/engine/hax-engine/Hax_engine/Phases/index.html
https://hacspec.org/hax/engine/hax-engine/Hax_engine/Phases/index.html
https://hacspec.org/hax/engine/hax-engine/Hax_engine/Phases/index.html
https://hacspec.org/hax/engine/hax-engine/Hax_engine/Phases/index.html
https://hacspec.org/hax/engine/hax-engine/Hax_engine/Phases/index.html
https://hacspec.org/hax/engine/hax-engine/Hax_engine/Phases/index.html

104 K. Bhargavan et al.

Eliminate Local Mutation. Rust functions can declare local mutable vari-
ables and modify them in conditional and loop expressions, but this kind of
mutation is not supported by some backends. The engine contains a phase
that eliminates local mutation and replaces it by shadowing. That is, the
mutation of a variable x gets replaced with a let expression that defines a
new instance of x with the updated value. This transformation is propagated
through blocks, loops, and function bodies, so that each expression returns a
pair consisting of its original return value and the set of updated values for
all mutable variables it modifies. This state-passing transformation is quite
straightforward and was also used e.g. in hacspec [34] and Aeneas [29].
Eliminate Mutable Borrows. Each Rust function can have mutably bor-
rowed inputs, mutably borrowed outputs, and local mutable borrows within
the function body. The engine implements a transformation that rewrites
functions that use mutable borrows as arguments into a state-passing style
(in a similar spirit to the elimination local mutation). Conversely, hax has only
limited support for functions that create or return mutable borrows. In gen-
eral, such borrows are only supported as long as they do not create aliases;
that is, as long as the mutable borrows are immediately used as function
arguments, in which case they are rewritten in a state-passing style.
Simplify Control Flow. Rust programs may contain any combination of
conditional, match, and loop expressions, where any deeply nested expression
could contain a return, break, or continue which can cause the control flow
to jump several layers outwards. Rust also supports the question mark (7)
operator that automatically propagates errors out from deep within a func-
tion. Most backend provers do not have such expressive control flow, and
consequently, the engine implements a set of phases that rearranges expres-
sions so that all these kinds of return expressions are always in leaf position in
the control flow graph and so the control flow of each expression is simplified
and made explicit in the syntax.

Functionalize Iterators. The Rust compiler desugars all the loop construc-
tions in its surface syntax, such as for and while loops, into a generic loop
construction over a generic iterator. The engine implements a phase that prop-
agates the state-passing transformation to loops so that they get transformed
into a state-passing fold construction that modifies an accumulator at each
iteration of the loop. Since proofs about loops often require the most manual
intervention, the engine also implements phases that identify common loop
patterns and translates them to specialized fold constructions. For example,
a for loop over a range is translated in a way that it is trivial to show that
it terminates.

3.3 Choosing and Composing Phases

The hax engine is designed to be modular in that it can be used to execute
different sequences of phases to obtain different results. Each phase has a set of
preconditions, expressed in terms of features it expects to be present or absent in
the input AST, and a post-condition that describes how it changes these features.

hax: Verifying Secure Rust Software 105

These constraints are enforced in the engine using typed OCaml functors and
feature variables that together ensure that only sensible compositions of phase
transformations can be created.

For each backend, we choose a specific set of phases. For example, to trans-
late Rust code to purely functional models in F* and Coq, we use all the phases
described above. ProVerif supports more flexible control flow, so we do not
need to perform the control flow transformation. SSProve supports local muta-
tion, and so we do not transform local mutation, while we still use the other
phases. Finally, each backend may only have limited support for certain fea-
tures, like loops or floating point numbers. In these cases, the engine leaves it to
the backend to identify and reject code that uses unsupported features.

4 hax Backends: Translating Rust to Verifiable Models

Once the hax engine has transformed the input Rust code into a suitable form,
we can use the corresponding backend implementation to emit a model in the
input language for some prover. The hax backend framework provides a set of
convenient libraries that make it easy to add new backends. This includes utilities
for formatting the output, mapping locations between the output model and
the input Rust source code, and other visualisation and dependency analysis
tools that can be shared between backends.

To add a backend, we need to implement rules for translating various syn-
tactic elements (items, expressions, types, etc.) into the corresponding syntax
of the target prover. We illustrate how this works for four backends: F*, Coq,
SSProve, and ProVerif. Backends for others provers such as EasyCrypt and Lean
are currently under development.

4.1 F*

F* [43] is a proof-oriented programming language that has been used to develop
verified software for a variety of projects, including cryptography [46], proto-
cols [20], and parsing [41]. Code written in F* can be compiled to OCaml for
testing and execution, and some subsets of F* can be compiled to C [40] and
WebAssembly [39]. To develop a proof in F*, the user annotates the F* program
with assertions, refinement types, invariants, pre- and post-conditions, and lem-
mas. These are then formally proved using F*’s dependent type system, with
the assistance of the Z3 SMT solver [35].

We illustrate the F* backend of hax with an example. Below is a function
that implements the Barrett reduction for signed 32-bit integers. This function
is taken from a new Rust implementation of the ML-KEM post-quantum cryp-
tographic standard [2] that uses hax for formal verification.

106 K. Bhargavan et al.

#[hax::requires((i64::from(value) >= -BARRETT_R && i64::from(value) <= BARRETT_R))]
#[hax: :ensures(|result| result > -FIELD_MODULUS && result < FIELD_MODULUS &&
result % FIELD_MODULUS == value % FIELD_MODULUS)]
pub fn barrett_reduce(value: i32) -> i32 {
let mut t = i64::from(value) * BARRETT_MULTIPLIER;
t += BARRETT_R >> 1;
let quotient = t >> BARRETT_SHIFT;
let sub = (quotient as i32) * FIELD_MODULUS;
hax::fstar!(r"Math.Lemmas.cancel_mul_mod (v $quotient) 3329");
value - sub

= O W00 Uk WN -

=

}

Barrett reduction is a commonly-used algorithm in implementations of mod-
ular arithmetic. Here, the function takes an input of type i32 and performs
a series of arithmetic and bitwise operations on it (multiplications, shift-right,
addition, subtraction) that implement a modular reduction with respect to the
constant FIELD_MODULUS (which here is the prime 3329). The reader might won-
der why do not directly use the remainder operator of Rust (%). The reason is
that division and remainder are not constant-time operations—their execution
time may depend on the value of their inputs—and hence are vulnerable to side-
channel attacks that may the potentially secret input value. Indeed, such attacks
have been found on similar function in ML-KEM implementations [12].

Panic Freedom. It is also important to remember that while Rust programs
are memory safe, they can still panic. In the code above, unless we can prove
that every multiplication, addition, and subtraction produces results that are
within the target type, the code will potentially panic on some inputs and never
return a result. For example, for any input greater or equal to 2147468668 the
barrett reduction function above goes out of bounds on line 8 and Rust panics
(in debug mode). So, when defining a hax backend, we need to decide whether
to generate the model in a way that the programmer must intrinsically prove
that the code never panics, or to produce a model that may panic and allow the
programmer to reason about panics extrinsically via lemmas. Different backends
may make different choice. In the F* backend we always prove panic-freedom
and so ask the programmer to add pre-conditions on the input to ensure the
absence of panics.

Correctness Specification. We add a specification to the function in the form
of a pre-condition and post-condition. The pre-condition (hax::requires) says
that the input is within a given range (here —226 <= value <= 226). The post-
condition (hax::ensures) says that the output computes the signed modulus of
the input with respect to the FIELD_MODULUS. Proving that the function meets
this specification requires a prover that can reason about the mathematical and
bitwise operations in the code as well as modular arithmetic.

F* Translation. When we use hax to translate the Rust code above to F*, we
obtain the model in Fig. 3. There are several notable elements in this translation:

— The Rust compiler elaborates all the type conversions and arithmetic oper-
ations to the corresponding library calls, such as core::convert::from and
core::ops::arith::neg::neg and adds the relevant type annotations. These

hax: Verifying Secure Rust Software 107

1 let barrett reduce (value: i32)

2 : Prims.Pure i32

3 (requires

4 (Core.Convert.f _from #i64 #i32 #FStar.Tactics. Typeclasses.solve value <: i64) >
5 (Core.Ops.Arith.Neg.neg v. BARRETT R <: i64) &&

6 (Core.Convert.f _from #i64 #i32 #FStar.Tactics. Typeclasses.solve value <: i64) <
7 v_BARRETT_R)

8 (ensures

9 Aresult —
10 let result:i32 = result in
11 result > (Core.Ops.Arith.Neg.neg v_FIELD _MODULUS <: i32) &&
12 result < v_FIELD MODULUS &&
13 (result %! v_ FIELD MODULUS <: i32) = (value %! v_ FIELD MODULUS <: i32)) =
14 let t:i64 =

15 (Core.Convert.f from #i64 #i32 #FStar.Tactics. Typeclasses.solve value <: i64) !

16 v_BARRETT_MULTIPLIER

17 in

18 et t:i64 =t +! (v_BARRETT_R >! 1l <: i64) in

19 let quotient:i64 = t >>! v_ BARRETT _SHIFT in
20 let sub:i32 = (cast (quotient <: i64) <:i32) ! v_FIELD MODULUS in
21 let _:Prims.unit = Math.Lemmas.cancel _mul_mod (v quotient) 3329 in
22 value —! sub

Fig. 8. Barrett Reduction function translated to F* by hax

are then translated by the F* backend to the corresponding library functions
modeled in F* (e.g. Core.Convert.f from).

— The pre-condition and post-condition get translated to the corresponding
requires and ensures clauses in F*.

— All mathematical operations are translated to the strict versions of these
operations in F* (e.g. +! ,—! ;x! ;>>!) which have pre-conditions stating that
their inputs must be within certain ranges to prevent panics.

— Local mutability for the variable t (line 6 in Rust) gets translated to variable
shadowing in F* (line 18 in Fig. 3).

F* Proof. The F* typechecker is able to automatically prove that the code does
not panic by using the Z3 SMT solver to reason about the arithmetic operations
and their bounds. In fact, it can prove that the function will not panic for any
input from —2147468667 to 2147468667. To prove the post-condition, however,
we need to use a mathematical property about modular multiplication called
cancel _mul mod in the F* libraries. We inject a call to this lemma within the
source Rust code at line 9 and it gets translated to the F* model. With this
lemma call, the F* typechecker is able to verify the function.

Backend Features. We have illustrated the F* translation by one example,
but more generally, the generated programs in the Pure (i.e. total, terminating,
side-effect-free) fragment of the F* language. Since F* is usually more expressive
than Rust, most of the translations are straightforward: enums translate to alge-
braic data types, structs to records, traits to typeclasses, etc. The F* backend
includes models for many commonly-used Rust features and libraries, but does
not support reasoning about raw pointers or mutable borrows that have not been
eliminated by the engine.

108 K. Bhargavan et al.

4.2 Coq

Coq, recently renamed Rocq, is a fully-featured interactive theorem prover with
a rich history and a large user community. Notably, Coq has a small kernel for
checking proofs and hence has a much smaller trusted base compared to F*
which relies on the correctness of both its typechecker and the Z3 SMT solver.

The Coq backend is very similar to the F* backend, with superficial dif-
ferences in the notations and libraries used in Coq. By translating Rust code
to Coq, we can prove the same kinds of properties as in F* (panic-freedom,
functional correctness) but using the tactic-based interactive proof style of Coq.
Some examples on the use of the hax Coq backend are given in [26].

4.3 SSProve

The SSProve tool [27] supports computational security proofs about cryp-
tographic constructions, using a technique called State Separating Proofs
(SSP) [17]. SSProve is structured as a library within Coq that defines an embed-
ded imperative domain specific language (DSL) that allows mutable local vari-
ables, random sampling, and various cryptographic and mathematical opera-
tions.

The backend for SSProve follows the same structure as for Coq, except that
it produces code within the SSProve DSL, which is restricted to a smaller set
of types. Notably SSProve does not support enums and structs, so we need to
encode these using tuples and sum types.

Security Proofs with SSProve. To show the use of the SSProve backend, we
will go through a simple example also used in the last yard [26]. The example
is the classic one-time pad (OTP) construction, implemented in Rust using the
XOR operation:

1 fn xor(a : ub4, b : ubd) -> ubd {
2 let x : ubd = a;

3 let y : ubd = b;

4 X"y

5 }

The SSProve backend translates this Rust function into the following definition
in SSProve (within Coq):

1 Definition xor (a : both int64) (b : both int64) : both int64 :=
2 xor a b :=
3 letb (x : int64) := a in
4 letb (y : int64) := b in
5 X .7y : both int64.
Next, we model the ideal behavior of this function. That is a purely mathematical
formulation of the desired behavior. The idealized function is written by hand
in SSProve as follows

Definition ideal_xor (a : both int64) (b : both int64) : both int64 :=

ret_both (is_pure a @ is_pure b)

To follow the methodology for state-separating proofs (SSP) [17], we modularize
each function into a package to isolate its behavior. A game, a pair of packages
indexed by a Boolean value, is defined from the real and ideal packages

hax: Verifying Secure Rust Software 109

Definition IND_CPA_game :=

fun b = if b then ideal_xor_package else xor_package.
Our security statement is: given the above game, it is impossible to find the
value of the Boolean, regardless of how you interact with the resulting package.
The best you can do is guess. This is called IND-CPA security. In SSProve, this
security statement is written as follows:

Theorem uncondition_security : V A, Advantage IND_CPA_game A = 0.

Linking SSProve with Coq. When proving, it is often useful to have a trans-
lation between the imperative SSProve code and the functional Coq code, so
that, for example, we can compute functions without needing to interpret the
SSProve code, or we can use existing Coq libraries. The SSProve backend auto-
matically generates translations between the generated SSProve and Coq models,
along with proofs of equality between the two, allowing the programmer to freely
switch between the two backends and safely compose their proofs.

4.4 ProVerif

ProVerif [15] is an automated security protocol verification tool, where proto-
cols are modeled in the applied m-calculus. Given such a protocol model and
security goals (such as confidentiality, authentication, privacy) stated as queries
over the model, ProVerif uses sophisticated algorithms to automatically verify
that the protocol satisies these goals against a large class of symbolic or Dolev-
Yao adversaries [22]. This threat model is one where the adversary can perform
unbounded computatation, start and control any number of protocol sessions,
read any message sent over the public network, and construct and send messages
of any size.

In terms of cryptography, the symbolic model of ProVerif is less precise than
the probabilistic computational model used in SSProve: it cannot guess secrets
and must treat all cryptographic operations as perfect black boxes. Conversely,
this abstraction allows ProVerif to automatically verify a large class of protocols
which would require painstaking manual proofs in computational proof backends.

Implementing Protocols. As an example, consider the following Rust function
taken from a protocol implementation. Here, the initiator function takes some
input keying material (ikm) and a pre-shared key (psk); it derives an encryp-
tion key and initialization vector (response_key_iv); it serializes and encrypts
this value with the pre-shared key; and it returns the key and a message
(initiator_message) that must be sent over the public network to the peer.

1 pub fn initiate(ikm: &[u8], psk: &KeyIv) -> Result<(Message, KeyIv), Error> {

2 let response_key_iv = derive_key_iv(ikm, RESPONSE_KEY_CONTEXT)?;

3 let serialized_responder_key = serialize_key_iv(&response_key_iv);

4 let initiator_message = encrypt(psk, &serialized_responder_key)?;

5 Ok((initiator_message, response_key_iv))

6)

A protocol implementation typically consists of a list of such functions, each
of which either processes or produces a protocol message, using some internal
state, cryptographic operations (like encrypt) and parsing/serialization func-
tions.

110 K. Bhargavan et al.

1 letfun proverif_psk__initiate(ikm : , psk : proverif_psk__t_Keylv) =
2 let response_key_iv = proverif_psk__derive_key_iv(
3 ikm, proverif_psk__v_RESPONSE_KEY_CONTEXT

4) in (

5 let serialized_responder_key =

6 proverif_psk__serialize_key_iv(response_key_iv)
7 in

8 let initiator_message = proverif_psk__encrypt(

9 psk, serialized_responder_key
10) in (initiator_message, response_key_iv)
11 else bitstring_err()
12)
13 else bitstring_err().

Fig. 4. ProVerif Translation of Protocol Initiator

The security goals of the protocol implementation are typically expressed
in terms of confidentiality—which variables must remain secret from the
adversary—and authentication—which variables must be protected from tam-
pering by unauthorized parties. In the function above, we may wish to ask that
response_key_iv must remain secret as long as the psk is secret, even if the
attacker get to read (and tamper) with the initiator_message (or any other
message sent over the public network).

ProVerif Translation. The Rust function above is translated to a function
macro on ProVerif, as depicted in Fig.4. Here, calls to the derive_key_iv and
encrypt functions are translated to calls to our cryptographic library model in
ProVerif, where they are modeled using symbolic constructors and destructors.

Serialization and parsing functions, like serialize_key_iv, can either be mod-
eled using tuples, constructors, and pattern matching, or the user can abstract
them as opaque constructors, depending on the precision of analysis desired.

The translation also shows how certain control-flow constructions in Rust are
transformed by the engine and the backend. On lines 2 and 4 of the Rust code,
we see the question-mark operator of Rust. This means that the expressions on
these lines can return an error and if they do, then the function immediately
returns with an error result. These lines are transformed by the hax engine so that
they have a more explicit control flow, which is then reflected in the generated
ProVerif model, which returns explicit errors when functions fail.

Automated Protocol Security Analysis. To verify security properties on the
ProVerif model, we extend the generated model with a verification scenario and
security goals as shown below:

free PSK: proverif_psk__t_KeyIv [private].
free SECRET_PAYLOAD: [private].
query attacker (PSK) .
query attacker (SECRET_PAYLOAD).
process
Initiator (PSK) | Responder (PSK, SECRET_PAYLOAD)

O T W N~

hax: Verifying Secure Rust Software 111

Here, Initiator and Responder are ProVerif processes that call the func-
tions extracted from the Rust code for the two parties in the protocol. Both share
a global secret variable PSK containing the pre-shared key, and the responder also
has a secret payload it encrypts back to the initiator.

The two confidentiality queries ask whether an attacker would be able to
obtain the pre-shared key or the secret payload. ProVerif is able to automati-
cally analyze the model and prove that these values are indeed secret. We can
also further extend the model and study the security of the protocol with an
arbitrary number of keys and payloads, where some pre-shared keys may be
compromised, etc. and ProVerif will be able to either prove security or provide a
counter-example with a symbolic attack. In some cases, especially where the
protocol contains some logical loops or recursive data structures, ProVerif may
not terminate and the user would need to encode some abstractions for analysis
to terminate.

ProVerif is just one of the many protocol verificaiton tools available in the
literature. In the future, one could consider targeting other such verifiers by
adding backends for them, or for languages like SAPIC+ language [18] that
unify many such tools under a common syntax.

5 Formal Models for Rust Libraries

Rust programs rely on a number of builtin features and libraries provided by
the Rust compiler and the standard libraries: core, alloc, and std.

Primitive types, like machine integers, and operators on them are defined
within the compiler. The core library defines a minimal set of features needed
by most Rust programs. The alloc library builds on top of core and handles
memory allocation and some basic data structures. The std library uses core
and alloc to provide a number of data structures.

These libraries are large: core is ~60,000 lines of Rust code (~2300 public
functions); alloc is another ~27,500 lines (~800 public functions); and std is
~92,000 lines (~3900 public functions). Not all these libraries are written in
Rust; some of them use wrappers around external C and assembly libraries.

To formally verify a Rust program, we must therefore provide models for
all its dependencies, including the Rust standard libraries and external third-
party crates. Of course, it would be even more desirable to formally verify these
external dependencies (see e.g. one ongoing effort to verify std”), but even mod-
eling the public functions in these libraries is a mammoth task that requires a
incremental community effort.

In the context of hax, we need to provide models of the libraries for each
backend, which can be both a tedious task and risks creating inconsistencies
between different backends. To this end, we employ two strategies towards mod-
eling the Rust libraries. For a minimal set of primitive types and functions, we
manually write models for each backend in a way that maximally leverages exist-
ing libraries and abstractions in that backend. For higher-level libraries, we write

" https://github.com/model-checking /verify-rust-std.

112 K. Bhargavan et al.

models in Rust and compile them using hax itself to generate consistent libraries
for each backend.

Hand-written Models for Primitive Types. Many types and functions that
are primitive to Rust still need to be mapped to the corresponding types and
constructions in various backends. This includes:

— machine integers (e.g. u8, i16, etc.), booleans, strings
slices and arrays ([T], [T; N1})

— options, results, and panic

iterators (loop, map, enumerate, etc.)

For each backend we need to manually write the translation of these primi-
tives; see Fig.5 for how some of them are mapped in the Coq backend.

fn primitives() {

// bool
let _: bool = false; Definition primitives >(_ : unit) : unit :=
let _: bool = true; let _ : bool := (false : bool) in

let _ : bool := (true : bool) in
// Numerics
let _: u8 = 12u8; let _ : t_u8 := (12 : t_u8) in
let _: ul6 = 123ul6; let _ : t_ul6é := (123 : t_ul6) in
let _: u32 = 1234u32; let _ : t_u32 := (1234 : t_u32) in
let _: ub4 = 12345u64; let _ : t_u6d := (12345 : t_ub4) in
let _: ul28 = 123456u128; let _ : t_ul28 := (123456 : t_ul28) in
let _: usize = 32usize; let _ : t_usize := (32 : t_usize) in

let _ : t_i8 := (-12 : t_i8) in
let _: i8 = -12i8; i let _ : t_i16 := (123 : t_il16) in
let _: il1l6 = 123i16; let _ : t_i32 := (-1234 : t_i32) in
let _: i32 = -1234i32; let _ : t_i64 := (12345 : t_i64) in
let _: i64 = 12345i64; let _ : t_i128 := (123456 : t_i128) in
let _: 1128 = 123456i128; let _ : t_isize := (-32 : t_isize) in
let _: isize = -32isize;

let _ : float := (1.2%float : float) in
let _: £32 = 1.2f32; let _ : float := ((-1.23)%float : float) in
let _: f64 = -1.23f64;

let _ : ascii := ("c"%char : ascii) in
// Textual let _ : string := ("hello world"}string : string) in
let _: char = ’c?; tt.

let _: &str = "hello world";

Fig. 5. Primitives translated to Coq

A key requirement for these hand-written models is that they must be exe-
cutable, so that we can run and test both these libraries and the code that uses
them. Of course, we also need these models to be suitable for verification, and
so we often extend these libraries with all the necessary lemmas and tactics to
help the user prove properties about their programs.

hax: Verifying Secure Rust Software 113

Generating Library Models from Rust. For most libraries in core, alloc,
and std, we advocate writing models of the library directly in Rust and compiling
these models to each backend.

In effect, we build a new version of these libraries, layered on top of the Rust
standard libraries, but shadowing the namespaces so that we can link them to
unmodified Rust code. For example, we implement the Add trait in core: :ops, as
a new hax-core: :ops: :Add, and translate it via hax to obtain models of core: : ops
in each backend.

To implement traits like Add generically for all machine integers in Rust, we
first build an architecture for the mathematical interpretation of rust types. We
define a Rust library for mathematical integers (represented by the type HaxInt),
and for each machine integer of type T, we define a method 1ift () that computes
its underlying integer (HaxInt) and a method lower () that casts a mathematical
integer into the machine integer (if it is within bounds, and panics otherwise).

This notion of abstracting (or lifting) and concretizing (or lowering) Rust
data types into mathematical structures is generally useful for writing formal
models in Rust and we systematically use it in our library models.

We can now specify libraries like core: :num and core: : ops directly in Rust, by
lifting the inputs to mathematical integers, doing the operations on HaxInt and
lowering the result back to machine integers. For example, the equality operation
on u8 is defined in Rust as an implementation of the PartialEq trait. We model
it in Rust as follows (using a type wrapper U8):

1 impl<’a> PartialEq for U8<’a> {

2 fn eq(&self, rhs: &Self) -> bool {

3 compare_fun(self.clone().lift(), rhs.clone().lift())
4 == QOrdering: :Equal

5 }

6

This then gets translated to each backend using the definitions of 1ift, lower,
and mathematical integers in that backend. For example, the Coq translation
is as follows. The trait implementation translates to a typeclass instance that
operates on Coq integers.

1 1Instance t_PartialEq_774173636 : t_PartialEq ((t_U8)) ((t_U8)) :=
2 {
PartialEq_f_eq := fun (self : t_U8) (rhs : t_U8) =
PartialEq_f_eq
(haxint_cmp
(Abstraction_f_lift (Clone_f_clone (self)))
(Abstraction_f_lift (Clone_f_clone (rhs))))
(Ordering_Equal);

© 00~ Ok W

}.
The F* implementation is similar, while in ProVerif, all machine integers are
modeled as mathematical integers, so lifting and lowering are identity functions.

Mixing the Two Styles. For each library, we always have the choice between
using the automatically generated model or manually writing models for different

114 K. Bhargavan et al.

backends. Where possible, we prefer generated libraries, since they require less
work and keep libraries consistent between different backends. However, in some
cases we may want to exploit some data structure or proof library that is available
in a specific backend. In such cases, we often start with the generated library
and then edit it to exploit features of the backend. For example, in the Coq
translation above we could replace haxint_cmp with the comparison operation in
Coq, which might result in simpler proofs.

6 Testing the Generated Models

The hax toolchain implements a sequence of translations from Rust to various
formal languages. There are many ways of gaining confidence that the models
generated by hax correctly capture the semantics of the input Rust code.

One could formalize the semantics of the source and target languages and
prove that the translation preserves the observable behaviors of the program.
This kind of proof effort can be valuable but requires significant effort and is less
feasible for frameworks like hax that support multiple, widely different backends.

Instead, we take a more pragmatic approach of using a mixture of testing
and proof to get more assurance in our methodology.

Verifying Library Annotations. For each function in the Rust library, our
library models provide pre- and post-conditions that specify whether and when
these functions may panic and what they compute. For the core library functions,
we also add specification of various useful properties, and prove these properties
for out library models. When generating library models, we can add these lemmas
in the Rust source so that they are reflected in all backends.

A simple example is commutativity of addition:

#[hax_lib: :lemma]
fn add_comm(x: u8, y: u8) -> Proof<{ x + y ==y + x }> {}

This generates a lemma that must be proven for each backend library.

We have added such lemmas for associativity, commutativity, distributivity,
negation, etc. for various combinations of arithmetic and bitwise operators for
various numerical types. We define similar lemmas about concatenation and
slicing of arrays and slices. These lemmas gives us more confidence that the
annotations we use for our proofs are sound with respect to our library models.

Testing Source Annotations. In addition to proving lemmas about source
code (and library) annotations, we can also use these annotations to drive
property-based tests. We systematically use the QuickCheck [19] framework to
automatically generate tests based on the pre- and post-conditions on the Rust
source code. In particular, this technique is used to generate hundreds of tests
for each function in our Rust standard library model, including our models for
each arithmetic operation.

Testing Generated Models. An important feature of the many hax backends
is that the generated models are executable, and hence testable. So, when we

hax: Verifying Secure Rust Software 115

compile some Rust code to (say) F*, we also compile its tests and run them
on the generated F*. This gives us confidence in the hax translation and in our
(executable) library models.

For example, [26] presents a reference implementation of the AES crypto-
graphic algorithm in Rust, and shows how it can be compiled via the hax
toolchain to SSProve. We test this AES implementation in both Rust and in
Coq/SSProve to prove that the encryption and decryption produce the same
result in the source code and target model.

Linking Different Models. Another way of gaining confidence in our transla-
tions is to formally link the models produced via independent translations. For
example, our SSProve backend actually consists of two translations. A functional
translation, which is very close to the Coq backend (but uses a smaller universe
of types); and an imperative translation with state, making use of the domain
specific language (DSL) for code in SSProve. The translations are combined into
language constructions, with a projection to each of the translations and a proof
of equality between them [26]. In a sense the main difference between the two
translation is that one of them uses a few extra functionalization phases, so
this proof can be seen as a proof of correctness for those phases.

7 Verifying Rust Applications with hax

The hax verification framework is used by several projects for the specification
and verification of security and correctness properties. In this section, we give a
brief overview of some of these applications.

hacspec. hacspec® is a purely functional subset of Rust that can be used,
together with a specification library, to write succinct, executable, and verifiable
specifications in Rust, that can then be translated into various formal languages
using hax. It has been proposed as a general specification language for IETF and
NIST standards [8].

The hacspec language has recently also been adopted by Crux-Mir [37], a
cross-language verification tool for Rust and C/LLVM. Crux-MIR has been used
to verify the Ring library implementations of SHA-1 and SHA-2 against their
hacspec specifications.

Libcrux. The libcrux library [31] provides a uniform API for formally verified
cryptographic implementations in Rust, C, and assembly. It uses hacspec to
specify the correctness of its implementations and presents a safe, defensive Rust
API to applications. Recently, the post-quantum key encapsulation mechanism
ML-KEM [36] was added to libcrux®. It was verified using hax and its F* backend.
This implementation has since been adopted by OpenSSH and by Mozilla for
use in its NSS cryptographic library.

8 https://hacspec.org.
9 https://cryspen.com/post /ml-kem-implementation, .

https://hacspec.org
https://hacspec.org
https://hacspec.org
https://cryspen.com/post/ml-kem-implementation/
https://cryspen.com/post/ml-kem-implementation/
https://cryspen.com/post/ml-kem-implementation/
https://cryspen.com/post/ml-kem-implementation/
https://cryspen.com/post/ml-kem-implementation/
https://cryspen.com/post/ml-kem-implementation/
https://cryspen.com/post/ml-kem-implementation/

116 K. Bhargavan et al.

In [30], hax” Coq backend is used to connect the Fiat-cryptography [23] ver-
ified compiler for finite field arithmetic in Coq. In this way, a simple specifica-
tion/reference implementation in hacspec can be compiled to a highly optimized
implementation in many C-like languages, such as C, Rust, Java, etc. This code
has also been integrated into libcrux.

Bertie. hax is used to extract a ProVerif model from the TLS 1.3 implemen-
tation in Bertie'® to perform a symbolic security analysis!!. hax is also used to
compile the parsing and serialization code of Bertie to F* in order to prove panic
freedom and functional correctness.

Smart contracts. Rust is a popular smart contract language, as it allows one
to efficiently compile to Wasm which is a popular on-chain virtual machine.
In [25], hax has been used to verify properties of Rust smart contracts using
the ConCert smart contract verification framework [4] in Coq. This is combined
with cryptographic proofs in SSProve.

8 Conclusion and Future Work

We have presented hax: a developer-oriented framework for verifying security
critical Rust code. Verification can be done in a wide spectrum of proof back-
ends, ranging from tools for generic program verification (F* and Coq) to sym-
bolic protocol analyzers (ProVerif) and provers for computational cryptogra-
phy (SSProve). We use a combination of testing and proving to gain assurance
that our specifications, translations, and library models are correct. The hax
toolchain is being used in many active projects, both in industry and academia.

The design is hax makes it compatible and extensible with other proof
methodologies and backend provers. The hacspec language is used in Crux-Mir,
the hax frontend is used in Aeneas, and the specifications used in hax are compat-
ible with Kani and Creusot. Moreover, our backend framework makes it easy to
add new backends. In future work, we would like to add new backends for Easy-
Crypt and Lean, as well as explore fully automated tools for verifying generic
Rust code.

References

1. Back to the building blocks: a path towards secure and measurable software
(2024). https://www.whitehouse.gov/wp-content /uploads/2024 /02 /Final-ONCD-
Technical-Report.pdf

2. Module-Lattice-based key-encapsulation mechanism standard (2024). https://doi.
org/10.6028 /NIST.FIPS.203

3. Almeida, J.B., et al.: Jasmin: high-assurance and high-speed cryptography. In:
CCS, pp. 1807-1823. ACM (2017)

19 https://github.com/cryspen/bertie.
" https://cryspen.com/post /hax-pv/.

https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://github.com/cryspen/bertie
https://github.com/cryspen/bertie
https://github.com/cryspen/bertie
https://github.com/cryspen/bertie
https://github.com/cryspen/bertie
https://cryspen.com/post/hax-pv/
https://cryspen.com/post/hax-pv/
https://cryspen.com/post/hax-pv/
https://cryspen.com/post/hax-pv/
https://cryspen.com/post/hax-pv/
https://cryspen.com/post/hax-pv/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

hax: Verifying Secure Rust Software 117

Annenkov, D., Nielsen, J.B., Spitters, B.: Concert: a smart contract certification
framework in COQ. In: CPP, pp. 215-228. ACM (2020)

Appel, A.W.: Verified software toolchain. In: Goodloe, A., Person, S. (eds.) NASA
Formal Methods - 4th International Symposium, NFM 2012, Norfolk, VA, USA,
April 3-5, 2012. Proceedings. LNCS, vol. 7226, p. 2. Springer (2012). https://doi.
org/10.1007/978-3-642-28891-3 2

Astrauskas, V., Miiller, P., Poli, F., Summers, A.J.: Leveraging rust types for modu-
lar specification and verification. In: Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), vol. 3, pp. 147:1-147:30 (2019)

Baelde, D., Delaune, S., Jacomme, C., Koutsos, A., Lallemand, J.: The squirrel
prover and its logic. ACM SIGLOG News 11(2), 62-83 (2024)

Barbosa, M., Bhargavan, K., Kiefer, F., Schwabe, P., Strub, P., Westerbaan, B.:
Formal specifications for certifiable cryptography (2024)

Barbosa, M., et al.: Sok: computer-aided cryptography. In: SP, pp. 777-795. IEEE
(2021)

Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.: Easy-
crypt: a tutorial. In: FOSAD. LNCS, vol. 8604, pp. 146-166. Springer (2013)
Basin, D.A., Cremers, C., Dreier, J., Sasse, R.: Tamarin: verification of large-scale,
real-world, cryptographic protocols. IEEE Secur. Priv. 20(3), 24-32 (2022)
Bernstein, D.J., et al.: KyberSlash: exploiting secret-dependent division timings
in Kyber implementations. Cryptology ePrint Archive, Paper 2024/1049 (2024).
https://eprint.iacr.org/2024/1049

Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pp. 483-502.
IEEE Computer Society (2017). https://doi.org/10.1109/SP.2017.26

Blanchet, B.: Cryptoverif: computationally sound mechanized prover for crypto-
graphic protocols. In: Dagstuhl Seminar Formal Protocol Verification Applied,
vol. 117, p. 156 (2007)

Blanchet, B.: Automatic verification of security protocols in the symbolic model:
the verifier proverif. In: FOSAD. LNCS, vol. 8604, pp. 54-87. Springer (2013)
Bond, B., et al.: Vale: verifying high-performance cryptographic assembly
code. In: Kirda, E., Ristenpart, T. (eds.) 26th USENIX Security Sympo-
sium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017,
pp. 917-934. USENIX Association (2017). https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/bond

Brzuska, C., Delignat-Lavaud, A., Fournet, C., Kohbrok, K., Kohlweiss, M.: State
separation for code-based game-playing proofs. In: Peyrin, T., Galbraith, S. (eds.)
ASTACRYPT 2018. LNCS, vol. 11274, pp. 222-249. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03332-3 9

Cheval, V., Jacomme, C., Kremer, S., Kiinnemann, R.: SAPIC+: protocol verifiers
of the world, unite! In: USENIX Security Symposium, pp. 3935-3952. USENIX
Association (2022)

Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
Haskell programs. In: ICFP, pp. 268-279. ACM (2000)

Delignat-Lavaud, A., et al.: Implementing and proving the TLS 1.3 record layer.
In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA,
May 22-26, 2017, pp. 463-482. IEEE Computer Society (2017). https://doi.org/
10.1109/SP.2017.58

https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://eprint.iacr.org/2024/1049
https://eprint.iacr.org/2024/1049
https://eprint.iacr.org/2024/1049
https://eprint.iacr.org/2024/1049
https://eprint.iacr.org/2024/1049
https://eprint.iacr.org/2024/1049
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1109/SP.2017.26
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1109/SP.2017.58
https://doi.org/10.1109/SP.2017.58
https://doi.org/10.1109/SP.2017.58
https://doi.org/10.1109/SP.2017.58
https://doi.org/10.1109/SP.2017.58
https://doi.org/10.1109/SP.2017.58
https://doi.org/10.1109/SP.2017.58
https://doi.org/10.1109/SP.2017.58

118

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

K. Bhargavan et al.

Denis, X., Jourdan, J.H., Marché, C.: Creusot: a foundry for the deductive ver-
ification of rust programs. In: International Conference on Formal Engineering
Methods, pp. 90-105. Springer (2022)

Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198-207 (1983)

Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level
code for cryptographic arithmetic - with proofs, without compromises. In: IEEE
Symposium on Security and Privacy, pp. 1202-1219. IEEE (2019)

Gabher, L., Sammler, M., Jung, R., Krebbers, R., Dreyer, D.: Refinedrust: a type
system for high-assurance verification of rust programs. Proc. ACM Program.
Lang. 8(PLDI), 1115-1139 (2024)

Hansen, L.L., Spitters, B.: Specifying smart contract with Hax and con-
cert. In: CoqPL (2024). https://popl24.sigplan.org/details/CoqPL-2024-papers/
9/Specifying-Smart- Contract-with-Hax-and-ConCert

Haselwarter, P.G., Hvass, B.S., Hansen, L.L., Winterhalter, T., Hritcu, C., Spitters,
B.: The last yard: foundational end-to-end verification of high-speed cryptography.
In: CPP, pp. 30-44. ACM (2024)

Haselwarter, P.G., et al.: SSProve: a foundational framework for modular cryp-
tographic proofs in COQ. ACM Trans. Program. Lang. Syst. 45(3), 15:1-15:61
(2023)

Ho, S., Boisseau, G., Franceschino, L., Prak, Y., Fromherz, A., Protzenko, J.:
Charon: an analysis framework for rust. arXiv preprint arXiv:2410.18042 (2024)
Ho, S., Protzenko, J.: Aeneas: rust verification by functional translation. PACM
PL 6(ICFP) (2022). https://doi.org/10.1145/3547647

Holdsbjerg-Larsen, R., Spitters, B., Milo, M.: A verified pipeline from a
specification language to optimized, safe rust. In: CoqPL’22 (2022). https://
popl22.sigplan.org/details/CoqPL-2022-papers/5/A- Verified- Pipeline-from-a-
Specification- Language-to-Optimized-Safe- Rust

Kiefer, F., et al.: HACSPEC: a gateway to high-assurance cryptography. Real-
WorldCrypto (2023)

Kroening, D., Schrammel, P., Tautschnig, M.: CBMC: the C bounded model
checker. arXiv preprint arXiv:2302.02384 (2023)

Lehmann, N.; Geller, A.T., Vazou, N., Jhala, R.: Flux: liquid types for rust. Proc.
ACM Program. Lang. 7(PLDI), 1533-1557 (2023)

Merigoux, D., Kiefer, F., Bhargavan, K.: Hacspec: succinct, executable, verifiable
specifications for high-assurance cryptography embedded in Rust, Technical report,
Inria (2021). https://inria.hal.science/hal-03176482

de Moura, L.M., Bjgrner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings. LNCS, vol. 4963, pp.
337-340. Springer (2008)

NIST: Module-lattice-based key-encapsulation mechanism standard, Technical
report, Federal Information Processing Standards Publications (FIPS PUBS) 203,
U.S. Department of Commerce, Washington, D.C. (2024). https://doi.org/10.6028/
NIST.FIPS.203

Pernsteiner, S., et al.: Crux, a precise verifier for rust and other languages. arXiv
preprint arXiv:2410.18280 (2024)

https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
https://popl24.sigplan.org/details/CoqPL-2024-papers/9/Specifying-Smart-Contract-with-Hax-and-ConCert
http://arxiv.org/abs/2410.18042
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3547647
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
https://popl22.sigplan.org/details/CoqPL-2022-papers/5/A-Verified-Pipeline-from-a-Specification-Language-to-Optimized-Safe-Rust
http://arxiv.org/abs/2302.02384
https://inria.hal.science/hal-03176482
https://inria.hal.science/hal-03176482
https://inria.hal.science/hal-03176482
https://inria.hal.science/hal-03176482
https://inria.hal.science/hal-03176482
https://inria.hal.science/hal-03176482
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
http://arxiv.org/abs/2410.18280

38.

39.

40.

41.

42.

43.

44.

45.

46.

hax: Verifying Secure Rust Software 119

Polyakov, A., Tsai, M., Wang, B., Yang, B.: Verifying arithmetic assembly pro-
grams in cryptographic primitives (invited talk). In: Schewe, S., Zhang, L. (eds.)
29th International Conference on Concurrency Theory, CONCUR 2018, September
4-7, 2018, Beijing, China. LIPIcs, vol. 118, pp. 4:1-4:16 (2018)

Protzenko, J., Beurdouche, B., Merigoux, D., Bhargavan, K.: Formally verified
cryptographic web applications in webassembly. In: 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pp.
1256-1274. IEEE (2019). https://doi.org/10.1109/SP.2019.00064

Protzenko, J., et al.: Verified low-level programming embedded in F. Proc. ACM
Program. Lang. 1(ICFP), 17:1-17:29 (2017). https://doi.org/10.1145/3110261
Ramananandro, T., et al.: Everparse: verified secure zero-copy parsers for authen-
ticated message formats. In: 28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019, pp. 1465-1482. USENIX Asso-
ciation (2019)

Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(2018). https://doi.org/10.17487/RFC8446

Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: Bodik,
R., Majumdar, R. (eds.) Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, pp. 256-270. ACM (2016). https://doi.org/10.
1145/2837614.2837655

The Coq Development Team: The Coq proof assistant (2024). https://doi.org/10.
5281 /zenodo.11551307

VanHattum, A., Schwartz-Narbonne, D., Chong, N., Sampson, A.: Verifying
dynamic trait objects in rust. In: Proceedings of the 44th International Conference
on Software Engineering: Software Engineering in Practice, pp. 321-330 (2022)
Zinzindohou¢, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: Hacl*: a verified
modern cryptographic library. In: Thuraisingham, B., Evans, D., Malkin, T., Xu,
D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, pp. 1789-1806. ACM (2017). https://doi.org/10.1145/3133956.3134043

https://doi.org/10.1109/SP.2019.00064
https://doi.org/10.1109/SP.2019.00064
https://doi.org/10.1109/SP.2019.00064
https://doi.org/10.1109/SP.2019.00064
https://doi.org/10.1109/SP.2019.00064
https://doi.org/10.1109/SP.2019.00064
https://doi.org/10.1109/SP.2019.00064
https://doi.org/10.1109/SP.2019.00064
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.5281/zenodo.11551307
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043

46 CHAPTER 3. HAX

3.3 Summary

We present the Hax framework as a tool for writing verifiable implementations and
specifications in Rust. The tool allows us to translate code written in a subset of Rust
into a selection of backends: ProVerif, F*, LVAN, EasyCrypt, Rocq, and SSProve.
The translation happens in a sequence of translation phases. Thus, the framework is
extensible and allows the implementation of new backends or adding support for more
of Rust by writing new translation phases.

3.4 The Technical Details of the Rocq Backends

Rocq/Coq

Many of the backends of Hax use common patterns when printing the AST. Thus,
Cryspen has introduced the generic printer, which enables one to write the translation
case by case given the translation of all sub-terms.

The Rocq backend builds on the generic printer and enables a lot of the simplifi-
cation phases as described in the paper. Taking the final AST and translating it into
Rocq is done in a couple of steps.

The supported primitives of the Rocq backend are the unit type, Boolean type,
and number types. We rarely handle chars, strings, and floats in the Rocq backend;
however, they do get translated. For example, see Figure 5 of the paper.

Types are translated straightforwardly. Enums become inductive types. Structs
become records, but we use the coq-record-update library [22] for supporting
record updates. Aliases are defined using notation, and functions become definitions.

Rust traits are translated into type classes, and instances are resolved using Rocq’s
type class resolution mechanism. This mapping can cause issues, as something
that did resolve in Rust might fail in Rocq. This could be made more faithful by,
e.g., implementing the trait resolution mechanism in Rocq. Some efforts exist, see
Chalk [46] and a-mir-formality [45], to formalize the trait system by using logical
programming. This could be ported to Rocq, e.g., using ELPI. This style of having an
implementation on the Rust side and an equivalent model after the translation is quite
common for Hax.

SSProve

For translating to SSProve, we have two options. Reusing the Rocq translation,
as Rocq code is allowed in SSProve. However, this makes it harder to work with
SSProve and does not take advantage of SSProve being imperative. The other option
is translating into SSProve directly, requiring a new translation and embedding of the
Rust types into the choice_type used by SSProve. We do a combination, where we
build the translation between the two during translation. For more details see §4.5.
An alternative would be to define a new Domain Specific Language (DSL) and
write the translation from that to SSProve within Rocq. This would allow us to prove

3.5. THE ANNOTATED RUST CORE LIBRARY 47

guarantees of the translation, allowing for stronger reasoning about memory, as we
can use the memory guarantees from Rust.

This requires us to write a deep embedding; however, the current shallow embed-
ding into SSProve already behaves much like a deep embedding into Rocq.

3.5 The Annotated Rust Core Library

The annotated Rust core library aims to unify the specification of the standard library
for the different proof assistant backends of Hax.

One of the core principles of this approach is that we want to write a functional
specification, which is closer to the backend version, and implement the imperative
types and functions using the function definition. An example could be implementing
u8 using N. To do this we first need to implement N (bootstrapping issues ensue).
The idea is then to replace the actual Rust implementation of N with the backend im-
plementation (and not the translation, solving bootstrapping). Now we can implement
u8 as one would in any of the backends, but this will align the implementations across
all the backends and allow the automatic translation of the specification to any old or
new backend. This reduces the implementation effort of the standard library to just
some common types and simple properties of those types. E.g., the constructors of N
and pattern matching, we get induction by defining things recursively.

Another benefit from implementing the standard library in this way is that we can
(efficiently) run the model of the core library. This also allows us to reuse existing
tests for the standard library and even translate them to the different backends for
re-running the test after translation. Thus, we can actually validate and check the
efficient implementation in the standard library against our mathematical model in the
backends.

We can also go one layer deeper, as N is defined using the standard library, so we
can instantiate that implementation another time. Thereby pushing the bootstrapping
one layer deeper. Thus, we can also check if our implementation of the functional
types is correct, using the translation of the implementation itself. This is in the style
of projects like MetaRocq [1].

Supported Functionality

To define the mathematical number types (N, N, and Z) in Rust, we start by defining
a common subtype, namely a (named) byte array. This definition makes use of the
alloc library as we are dynamically allocating memory. This causes a bootstrapping
issue, which is solved by replacing the definitions during translation, thus removing
the use of the byte array and thereby the recursive definition. To define the N, N,
and Z, we wrap the common subtype in a constructor to represent that the byte array
is being interpreted in a specific way. Now that we have the types, we need to define
constructors and destructors. These constructors will need to manipulate the byte
array, which should not exist in the core library; thus, we again need to replace these
constructors during translation. We could leave these definitions empty or undefined;

48 CHAPTER 3. HAX

however, giving them an actual implementation allows us to validate the correctness
of the specification for the core library. The constructors for N are 0 and succ, and
are implemented as bit operations on the underlying byte array. Finally, we define
pattern matching (i.e., destructors) for N, by defining a match function going from
N to Nepum- Thus, given input value 7 : N, the match function either returns ZERO
or SUCC(pred n), which allows one to use Rust pattern matching, with inner types
still being N. Given the N type and its constructors and destructors, we can now
implement all the operations over N, e.g., addition, multiplication, etc.

Next we define positive binary numbers N from the constructors for XH (one),
X0 (times two plus zero), and XI (times two plus one). Again, these are defined from
mul2 and div2 operations on the underlying byte array. The destructor again uses
an enum type. Using the binary positives, we can define binary N as ZERO or POS,
where POS is given a N,.. We can furthermore define Z from constructors NEG, ZERO,
and P0S, with POS and NEG given a N . Having the binary positives allows us to
somewhat efficiently implement addition and multiplication but further allows us
to implement integer division and modulo using the greatest common divisor (gcd)
operation. Thus, we can actually run tests using these mathematical definitions, where
unary numbers would be too slow.

Implementing, e.g., u8 using N is an instance of a more general problem of
defining bounded integers. We therefore define an intermediate type for both signed
and unsigned bounded integers, which can be instantiated for the current (and possibly
future) Rust integer types. We have a generalized constant bound for the type and
define operations using the operations on the internal binary N or Z types. This usually
boils down to calling the operations and then doing a modulo on the result. Thus,
we get a full library for generalized machine integers that can be translated to all
the backends of Hax, with a common naming scheme. This greatly simplifies the
renaming and redirection efforts, but at the cost of using translated structures instead
of simple or native ones.

Using a more efficient representation or a library with more proofs requires
manually replacing more of the definitions and comes with some maintenance cost.
Alternatively, we can show the translated types are equivalent to the ones in the library
and then translate proofs over the equivalence.

We translate most of the primitive Rust types this way, i.e., the never type, arrays
and vectors (as linked lists/cons lists), and the option and result types.

Further extensions

We have some experimental and partial support for iterators. However, since these
are such a central part of the translation, some backends translate common patterns
to specific language constructs (e.g., for-loops). There are also some complexity
and efficiency concerns with translating iterators without manually replacing parts of
them.

Another thing that is common among the backends is a proof library. Currently,
we only have the definitions of the primitive types and some proof statements and unit

3.6. CREUSOT 49

tests for ensuring correctness. However, we could define a common proof language
that is translated into proofs in each of the backends and thereby share a common
formalization of the core library. Having automated proofs of statements translate into
the backends would be an interesting thing to explore.

Other than these considerations, implementing more of the core library would be
very useful, as this is a large part of the work required to add a new backend. Having
more tools and backends connected to Hax would be very useful, as the strength of
the tool lies in the combination of the strengths of each backend.

External libraries

This process of reimplementing external code and creating models for code that
cannot be implemented in the Hax subset ensures a common representation, which
can be tested against the original. When using Hax, as with many tools, the main
restriction for adaptation is the library support, the robustness of backends, and general
documentation. Having a methodology to extend both documentation and library
support allows the tool to grow and enables external contributions. As specifying
libraries in Hax allows one to translate to all the backends, this ensures that all the
backends are robust, not just the most used ones.

3.6 Creusot

Creusot is a framework for annotating and validating properties of Rust code. The
framework allows one to write models and generate proofs from annotations. These
proofs are then checked using SMT solvers (Why3).

We have added this annotation to an earlier version of Hax, as the supported
subset of Hax is still just Rust code. Translating these annotations to, e.g., Rocq,
we can directly reprove the properties. One interesting project in this regard is “A
Formalization of Core Why3 in Coq” [30], which would allow us to extract Why3
code with Creusot and then run Why3 in Rocq, getting the SMT proof within Rocq.

Pearlite

Pearlite is the annotation language used by Creusot. The Hax engine did at one point
support writing Pearlite annotations and getting proof statements translated into Rocq.
In the current version of Hax, more general contracts' are used. Having the annotation
between the tools aligned will allow us to run the static analysis tools or SMT solvers
before translation and formally proof the results after translation. This can help ensure
the correctness of the properties that would be a target of verification.

"https://doc.rust-lang.org/core/contracts/index.html

https://doc.rust-lang.org/core/contracts/index.html

50 CHAPTER 3. HAX

3.7 QuickCheck/QuickChick

QuickCheck is a property-based testing framework based on the original library with
the same name in Haskell [27]. It allows one to test properties by generating a lot of
tests. Here, we need to remember the following wise words.

Testing shows the presence, not the absence, of bugs.
— Edsger Wybe Dijkstra

However, it is still useful to find issues before starting on formal proofs. Furthermore,
we can translate the statements of QuickCheck into Rocq. This allows us to rerun the
tests using QuickChick, the Rocq implementation of QuickCheck. We can also proof
the statements once and for all, after having shown it holds for, e.g., 10,000 examples.

This process has already helped capture issues in an elliptic curve implementation,
as the generator in Rust did not find the case, which was found in Rocq. This also
highlights the importance of writing good generators when working with property-
based testing.

3.8 Automation: SMT solvers, Hammers, and Large
Language Models (LLMs)

Extending the selection of tools like Creusot and QuickCheck, which Hax can col-
laborate with, emboldens the multiprover/multitool paradigm of Hax. Many static
analysis tools can give a lot of strong properties with little extra effort. Starting the
formalization with these guarantees can lessen the complexity of the formalization
and the amount of annotation needed to express it.

The focus of Hax is on verification of complex properties or protocols. Thus,
automation has been less of a priority, as, e.g., security of TLS cannot be proven
automatically. However, having a common representation, using proof transfer, and
offloading simpler proof statements to SMT solvers, hammers, or LLMs could greatly
improve the verification process. This also lowers the requirement for verification by
allowing some simple code to be verified without the need for expertise in interactive
theorem proving.

Chapter 4

The Last Yard: Foundational
End-to-End Verification of
High-Speed Cryptography

We start by giving some extra background theory relevant for the paper. First we
present Hacspec a functional subset of Rust for writing (cryptographic) specifications.
Next, we explain relevant properties of the Advanced Encryption Standard (AES).
Then the paper is presented, followed by a summary (see §4.4) framing the work in
relation to the rest of the thesis. We then discuss the SSProve backend of Hax and
its dual translation, which can be seen as translation validation or a simple form of
realizability. Finally, we discuss the possibility for a more mathematical specification
of AES.

4.1 Hacspec

One of the issues with the internet standards (like IETF or NIST) is that they use
ambiguous or imprecise descriptions written in pseudocode or just plain English. To
fix this specification issue, we want to have a simple and executable programming
language, which allows one to specify all the standards without the use of complex
features, which would reintroduce some of the interpretation issues. Thus, we use the
high-assurance cryptographic specification language, Hacspec [7, 58, 74], for writing
specifications of protocols. The Hacspec language is a functional subset of Rust; this
enables both high- and low-level specification. One of the important parts of Hacspec
is the library, which implements prime fields and secret integers, as these are common
structures used in cryptographic specifications. The language also allows the use of
annotations for defining pre- and post-conditions on functions to make some of the
requirements in specifications explicit.

The Hacspec subset of Rust allows one to use records, enums, traits, pattern
matching, functions, and macros and only allows bounded recursion. We can define
Hacspec as a specific set of features in Hax. Any code needing transformations

53

54 CHAPTER 4. THE LAST YARD

to fit into the feature set should be rejected, as the specification language should
remain simple! As this feature set is well within what the backends of Hax usually
support, we should be able to translate Hacspec to each backend. Thus, Hacspec is an
executable language with a (small) library of common and useful definitions, making
specifications simple, readable, and precise. Furthermore, we can proof general
properties of a specification and use Hax to write a more efficient implementation and
then prove that it adheres to the specification.

4.2 Advanced Encryption Standard (AES)

We will present the mathematical specification of the Advanced Encryption Standard
(AES) [75] to give insights into the inner workings. This mirrors the executable
specification implemented in Hacspec that is used in the paper; see §4.3.

AES is a block-based encryption standard, which works by doing a series of
mixing and shifting. If one does only mixing or only shifting, then it is not secure, but
doing both seems to be enough to get cryptographic security.

AES first instantiates a list of round constants and the substitution box (S-box).
The round constants are precomputations of the coefficients of x'~! for i € [0,14] in
the polynomial field

GF(2)[x]/(x® +x* +x° +x+1).

for multiplying numbers using their representation in the above polynomial field. The
computations of the round constants are then done as follows

= =X
= 0b10001101 = 0x8d
AT =x0=1
= 0b00000001 = 0x01
Pl =xl=x

= 0b00000010 = 0x02

Bl 22

= 0b00000100 = 0x04

Al 33

= 0b00001000 = 0x08

xSfl :x4 — x4

= 0b00010000 = 0x10

S W

= 0b00100000 = 0x20

1= 6 6

= 0b01000000 = 0x40

4.2. ADVANCED ENCRYPTION STANDARD (AES)

8—1

X

9—-1

X

X

X

A2 10— (S S P) x = a4
=0b11011000 = 0xd8
A = 2 = (T a0t) x = B T

= +x"+ 0+ (Pt +x 1)

X

thus, the round constants are

10—1

11-1

14—-1

7

7

=X =X

= 0b10000000 = 0x80

=B =Bt) = a1

= 0b00011011 = 0x1b

:x9

_ 10

8

=X

= x D) =+ 04 x
= 0b00110110 = 0x36

:x9

=X+ X+ +x+1

=0b10101011 = Oxab
=+ + 1) =S

_ 3

=X

12

=48t (Bt R a1
=0+ +0+1

= 0b01001101 = 0x4d;

[8d,01,02,04,08,10,20,40,80, 1b, 36, 6c, d8, ab, 4d].

x= @+t x) =0 0 AP
=0b01101100 = 0x6¢C

In the presentation of MixColumns, we show how to do this computation
numbers, instead of abstract field multiplications. The S-box is given as

63
CA
B7
04
09
53
DO
51
CD
60
EO
E7
BA
70
El
8C

7C
82
FD
Cc7
83
D1
EF
A3
0C
81
32
C8
78
3E
F8
Al

77
C9
93
23
2C
00
AA
40
13
4F
3A
37
25
B5
98
89

7B
7D
26
C3
1A
ED
FB
8F
EC
DC
0A
6D
2E
66
11
0D

F2
FA
36
18
1B
20
43
92
5F
22
49
8D
1C
48
69
BF

6B
59
3F
96
6E
FC
4D
9D
97
2A
06
D5
A6
03
D9
E6

6F
a7
F7
05
5A
B1
33
38
44
90
24
4E
B4
F6
8E
42

C5
FO
cC
9A
AO
5B
85
F5
17
88
5C
A9
Ccé6
OE
94
68

30
AD
34
07
52
6A
45
BC
C4
46
Cc2
6C
E8
61
9B
41

01
D4
A5
12
3B
CB
F9
B6
A7
EE
D3
56
DD
35
1E
99

67
A2
E5
80
D6
BE
02
DA
TE
B8
AC
F4
74
57
87
2D

2B
AF
F1
E2
B3
39
TF
21
3D
14
62
EA
1F
B9
E9
OF

FE
9C
71
EB
29
4A
50
10
64
DE
91
65
4B
86
CE
BO

D7
Ad
D8
27
E3
4C
3C
FF
5D
5E
95
TA
BD
C1
55
54

AB
72
31
B2
2F
58
oF
F3
19
0B
E4
AE
8B
1D
28
BB

76
Cco
15
75
84
CF
A8
D2
73
DB
79
08
8A
9E
DF
16

55

using

56 CHAPTER 4. THE LAST YARD

which is computed from

pi=(x+1)" mod(X®+x*+x°+x+1)

gi=((x+1)7")

="+ 2 2 +x) mod (Bt x+1).
We define the rotation of a word as
ROTLg(v,s) = ((v < s) mod 2%) | (v>> 8 —5).
The indexes of the S-box is then defined as
SBOX[p;] = ¢; ®ROTLg(g;, 1) ®ROTLg(g;,2) @ ROTLg(gi,3) ©ROTLg(g;,4) b 0x63.

The two main operations for AES are MixColumns and ShiftRows. A round consists
of applying the S-box as a substitution table, then doing ShiftRows and MixColumns,
and finally exclusive OR the result with the round key. This process is reversible,
but here we are only looking at the encryption part of the protocol. Verification
of decryption should not be too hard, as we already have all the components and
a proof that they follow the specification. Furthermore, we have also tested the
implementations on the test vectors given in [75].

Matrix Representation

In the following we assume that we are working with a big-endian representation; that
is, the number
0x3c4£fcf098815f7aba6d2ae2816157e2b

is stored as

3c4f c£ 09 8815f7ab a6d2ae28 16 157e 2b,
whereas the NIST document is working in little endian, i.e.,

2b7e 1516 28aed2ab6 abf71588 09 cf 4f 3c.

We can map one to the other by reversing the order of the bytes. Many of the operations
in AES represent the ul28 numbers as a matrix. This is done by first splitting the
input ul28 into four u32 words, i.e.,

a=daszapa ap,
and then each word is split into four
a; =4a;34;2 aij ao-
The computation is done by

a; = (a>>i-32) mod 2°?

4.2. ADVANCED ENCRYPTION STANDARD (AES) 57

and
aj;=(aj>>i-8) mod 2°.

This gives us the following matrix of u8s from aul28

apo do1 do2 4o3
ap ail diz a3
ao a1 a2z 423
aso as1 4szz d4s3

The ul28 is rebuilt by combining four u32s rebuilt from the u8s, i.e.,
a=da334a3pa31 0430 d234220210420 413a1241,1d10 do3 ap2 do,1 4o,0-
This is the inverse of the split and can be computed by
a;i=(ai3<3-8) | (ai2<2-8)| (a1 <1-8)]aio

and
a=(a3<3-32) | (ap <2-32) | (a1 < 1-32) | ap.

SubBytes

We define helper functions
RotWord(v) = (v>> 8) | ((v < 3 -8) mod 2°?)

and
SubWord(v) = SBOX[vs] SBOX[v2] SBOX[vi] SBOX[vg].

We can then define the substitution phase as
SubBytes(a) = SubWord(az) SubWord(az) SubWord(a;) SubWord(ap).

Thus, the SubBytes function indexes into the SBOX for each u8 in the matrix repre-
sentation of the input ul28 word. Indexing into the SBOX with a u8 can be seen as
using the 4 most significant bits as an x-coordinate (row) and the 4 less significant
bits as the y-coordinate (column).

MixColumns

The mix columns algorithm computes a mixing of a column c¢ by

Tei=dci® (ac,O Dac1 Dacr D ac,S) P xtime (ac,i Da, (i4+1) mod 4),

where xtime is defined as

xtime(v) = ((v < 1) mod 28) @ (((v > 7) & 0x01) - 0x1b).

58 CHAPTER 4. THE LAST YARD

If we use the notation
aeb=a-bmod (x®+x*+x* +x+1)

to represent multiplication in the field, then xtime(v) represents v e x. Thus, each
of the round constants can also be computed by repeated application of xtime, i.e.,
by rc; = xtime'(1), as vex' can be computed by xtime’(v). More generally we can
define multiplication with a polynomial as

7
aeb= @Xtimehi'i(x),
i=0

where xtime®(a) = a. We can compute p; by
pi+1 = xtime(p;) & pi,
as this computes p;ex+ p; = p;® (x+ 1) and g; as
gir1 =xtime’(g;) xtime®(g;) B xtime’ (¢;) ®xtime*(¢;) Bxtime?(g;) Pxtime(q;).

We can compute the round constants and S-box using the following Python code:

from functools import reduce

def rotl8(x,shift):
return ((x << shift) % 2**8) | (x >> (8-(shift)))
def xtime(v):
return ((v<<1)%2*%*8) * (((v >> 7) & 0x01) * 0x1b)
def xtime_i(v,i):
return reduce(lambda x, y: xtime(x), range(i), v)
def mult_poly(p,v):
return reduce(
lambda i, j: i A j,
[xtime_i(v,i) for i in range(8) if p & 2%*i])

def sbox():

sbox = [0 for i in range(256)]

sbox[0] = 0x63

p=1,q=1

while True:
p = mult_poly(®b0000OO11, p)
g = mult_poly(0b11110110, q)
sbox[p] = q *» rotl8(q,1) » rotl8(q,2) *» rotl8(q,3) *
rotl8(q,4) * 0x63
if (p == 1): break

return sbox

def rcon(Q):
return [0x8d] + [xtime_i(1l,i) for i in range(14)]

4.2. ADVANCED ENCRYPTION STANDARD (AES) 59

To complete the construction of the mix columns, we rebuild each column
Fe=Te3Tc2Tc17c0

and finally the full number
r=r3ryriro.

ShiftRows

We take the matrix representation of the ul28. We then shift each row by its index,
starting at zero. That is, we leave the first row as is, shift the second row by one, shift
the third row by two, and shift the fourth row by three. This can be illustrated as

apo ao1 do2 A3 apo ao1 do2 403
aro air aip a3 | shifr | dig dry A3 dig
aro a1 a2p a3 @wmp a3 aro Az
aso as) dzp a3 a3 azp 4zl 4dsp

Verifying the implementation of shift rows can be done directly by computation, as
we are comparing the observable behavior of two pieces of executable code, which
is one of the advantages of having an executable specification. This check caught an
index error! in the Jasmin implementation of AES, where a» 3 was incorrectly given
the value of a5 ».

AES encryption
Encryption is done by taking a message and a key
encygs(m, k) = MixColumns(SubBytes(ShiftRows(m))) Gk,
except for the last round of AES, where we do not apply MixColumns
encLastgs(m, k) = SubBytes(ShiftRows(m)) k.

For the full AES computation, the encryption function is then called in 10 rounds (for
AES-128), finishing with the encLast function

aes(m,ko 11) = encLast(enc(:--enc(enc(m @ ko,k1),k2) - ,k10),k11)-

Key Expansion

The goal of key expansion is to generate a sequence of keys from the original. The
key expand function first splits the key into bytes, then computes

kit 1,0 = kio @ SubWord(RotWord(k; 3)) &RCON;

"https://github.com/jasmin-lang/jasmin/pull/429

https://github.com/jasmin-lang/jasmin/pull/429

60 CHAPTER 4. THE LAST YARD

kiy110 = ki1 ®kiy10
kiv12=ki>®kiy1,
kiy13 = ki3 ®kiy12,

which are then combined by
kiv1 = kiv13 kiv12 kiv1,1 kiv1,0-

The round keys are computed from the key expansion function, iteratively starting
with ko = key, i.e., the users private key.

Intel AES-NI Instructions

An alternative definition comes from the x86 instruction set in the Intel architec-
ture [47] with

KeyExpand(rc,k,t) = KeyCombine(k,aeskeygenassist(k,rc),t).

Here, the returned value is the next k and ¢, starting with kg = key and o = 0. The
AES key generation assistance (aeskeygenassist) function computes part of the
AES key. There exist x86 instructions for these? [47]. Given 128-bit input x and 8-bit
input » we compute

Yo = SubWord(x;)
y1 = RotWord(y) B b
y2 = SubWord(x3)
y3 = RotWord(y,) ® b,

and then the aeskeygenassist function returns the recombination of these y =
¥3 Y2 ¥1 Yo. We define some helper functions available in the Intel architecture

vpshufdi(s,0); = (s > (32 ((0 > (2-i)) mod 4)))o,

vpshufd(s,0) = {vpshufdi(s,0)};c 3,

and
vshufps(sisz,0) = {vpshufdi(s,0)},c, 5 {vpshufdi(si,o)},c0 ;-

The KeyCombine function takes the round key k and two values a and b. It then
computes a couple intermediate values:

d = vpshufd(a, 0xFF),

2https ://www.intel.com/content/dam/doc/white-paper/advanced-encryption-
standard-new-instructions-set-paper.pdf

https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf

4.3. THE PAPER 61

b = vshufps(b,k, 16),
K=kaob,
and
b" = vshutps(b', k', 140).

Then we can define
KeyCombine(k,a,b) = (K ®d ®b",b").

This is intended to compute the same value, but can now use specialized hardware to
compute the aeskeygenassist function.

4.3 The Paper

We will now present the paper “The Last Yard: Foundational End-to-End Verification
of High-Speed Cryptography” [48] published at the Conference on Certified Programs
and Proofs (CPP’24). The paper introduces our framework for validating crypto-
graphic primitives. That is writing an executable specification, proving security about
it, and proving an implementation adheres to the specification. The tools we use here
are Hacspec/Hax, Jasmin, and SSProve. A summary and a framing of the paper can
be found in §4.4.

L)
Check for
Updates

The Last Yard: Foundational End-to-End Verification of
High-Speed Cryptography

Philipp G. Haselwarter* Benjamin Salling Hvass" Lasse Letager Hansen"
Aarhus University Aarhus University Aarhus University
Denmark Denmark Denmark
philipp@haselwarter.org bsh@cs.au.dk letager@cs.au.dk
Théo Winterhalter Catalin Hritcu Bas Spitters
Inria MPI-SP Aarhus University
France Germany Denmark
theo.winterhalter@inria.fr catalin.hritcu@mpi-sp.org spitters@cs.au.dk
Abstract CCS Concepts: » Theory of computation — Program

verification; Program specifications; « Security and pri-
vacy — Symmetric cryptography and hash functions; Logic
and verification;

The field of high-assurance cryptography is quickly matur-
ing, yet a unified foundational framework for end-to-end for-
mal verification of efficient cryptographic implementations
is still missing. To address this gap, we use the Coq proof
assistant to formally connect three existing tools: (1) the Hac-
spec emergent cryptographic specification language; (2) the
Jasmin language for efficient, high-assurance cryptographic
implementations; and (3) the SSProve foundational verifica-
tion framework for modular cryptographic proofs. We first
connect Hacspec with SSProve by devising a new transla-

Keywords: high-assurance cryptography, formal verifica-
tion, computer-aided cryptography, AES, Coq

ACM Reference Format:

Philipp G. Haselwarter, Benjamin Salling Hvass, Lasse Letager
Hansen, Théo Winterhalter, Cétélin Hritcu, and Bas Spitters. 2024.
The Last Yard: Foundational End-to-End Verification of High-Speed
Cryptography. In Proceedings of the 13th ACM SIGPLAN Interna-

tion from Hacspec specifications to imperative SSProve code. tional Conference on Certified Programs and Proofs (CPP "24), Janu-
We validate this translation by considering a second, more ary 15-16, 2024, London, UK. ACM, New York, NY, USA, 15 pages.
standard translation from Hacspec to purely functional Coq https://doi.org/10.1145/3636501.3636961

code and generate a proof of the equivalence between the

code produced by the two translations. We further define 1 Introduction

a translation from Jasmin to SSProve, which allows us to
formally reason in SSProve about efficient cryptographic im-
plementations in Jasmin. We prove this translation correct in
Coq with respect to Jasmin’s operational semantics. Finally,
we demonstrate the usefulness of our approach by giving a
foundational end-to-end Coq proof of an efficient AES im-
plementation. For this case study, we start from an existing
Jasmin implementation of AES that makes use of hardware
acceleration and prove that it conforms to a specification
of the AES standard written in Hacspec. We use SSProve to
formalize the security of the encryption scheme based on
the Jasmin implementation of AES.

Research on high-assurance cryptography recently led to
significant practical success, with formally verified crypto-
graphic code making its way into mainstream libraries and
software products [7, 14, 16, 19, 21, 34, 37, 41, 42]. Since in
this area missing any bugs can have a serious security impact,
some additionally try to reduce the trusted computing base of
their verification tools for cryptographic code and construct
foundational proofs [5, 14, 21, 25, 29, 32]. Such foundational
proofs rely on strong logical foundations—usually by work-
ing in a proof assistant like Coq or Isabelle/HOL—and only
on standard, clearly stated assumptions. Yet despite good
progress in this direction, a couple of important gaps remain
for foundational end-to-end cryptographic verification.
First, there is a specification gap. Currently, cryptographic
primitives and protocols are specified only using informal

“Equal Contribution.

pseudo-code in the standards (e.g., in IETF RFCs). The Hac-
5y spec language [15, 31] aims to improve this, by making the
This work is licensed under a Creative Commons Attribution 4.0 Interna- code of these cryptographic specifications executable, which

ional License. . .
tional License allows them to also serve as reference implementations that

CPP 24, January 15-16, 2024, London, UK can be used as qracle.s for testing more efficient implemer.lta-
© 2024 Copyright held by the owner/author(s). tions. Hacspec is a simple subset of the Rust programming
ACM ISBN 979-8-4007-0488-8/24/01 language, which aims to be understandable for both ordinary
https://doi.org/10.1145/3636501.3636961 developers and cryptographers. Hacspec can be translated

30

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0198-7751
https://orcid.org/0000-0001-9390-3441
https://orcid.org/0000-0003-3271-3593
https://orcid.org/0000-0002-9881-3696
https://orcid.org/0000-0001-8919-8081
https://orcid.org/0000-0002-2802-0973
https://doi.org/10.1145/3636501.3636961
https://doi.org/10.1145/3636501.3636961
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3636501.3636961&domain=pdf&date_stamp=2024-01-09

CPP °24, January 15-16, 2024, London, UK

Hacspec
specification

Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters

verified translation/compilation

—>» validated translation
|- This paper —> unverified parsing/pretty printing
R e
1 : formalized in Coq
1
1 \ 4 \ 4 : formalized in SSProve
! 1 . .
: SSProve Equivalence Functional 1 D handwritten artifacts
1 specification proof specification : () generated artifacts
1
i e |
1 1
1 s (e \ M
1 . 1 .
: Equlvalince) SSProve . 1] Jasmin Coq AST | . Jasmin .
proo: implementation 1 implementation

! \ ! \ 7 \ J
1 1
L a4

— SEEE—

Assembl
Assembly Coq AST implementaﬁion
~— ~——

Figure 1. Proposed workflow for foundational end-to-end verification of high-speed cryptography

to the typed, purely functional language of proof assistants
such as Coq, EasyCrypt, or F*, which allows sharing crypto-
graphic specifications across these proof assistants.

Such translations from Hacspec to a proof assistant pro-
duce a functional specification that can be used for verifying
cryptographic code. In such a verification one often starts
by proving the equivalence of the functional specification
with an imperative specification, which is closer to the code
of an implementation to be verified [5]. We automate this
step by devising a new translation from Hacspec to imper-
ative programs in SSProve, which is a recent foundational
verification framework for modular cryptographic proofs
in Coq [1, 25]. Moreover, we provide translation validation
infrastructure for automatically proving the equivalence of
the code produced by these two translations.

Second, there is an implementation gap. Implementing
cryptography in C has pitfalls: (1) unverified C compilers can-
not be trusted to be always correct and secure [39], and (2) the
CompCert verified C compiler does not perform aggressive
optimizations and generates code with efficiency comparable
only to GCC at optimization level 1 [2, 28]. Moreover, even
aggressively optimized C programs are sometimes not fast
enough since they cannot make use of special instructions
providing hardware acceleration for cryptographic primi-
tives (e.g., Intel AES-NI [23]). So cryptographic primitives
are often implemented directly in assembly, at the cost of
loss of abstraction, clarity, and convenience. The Jasmin lan-
guage [4] was proposed as a solution to this problem. It is a
language for implementing cryptographic primitives com-
bining structured control flow with assembly instructions,
which allows one to produce efficient code for x86 and ARM.
Moreover, the Jasmin compiler comes with Coq proofs that

31

it preserves the semantics of the source code [4, 5] and that
it does not introduce timing side-channel attacks [6].

In the fundamental ‘Last Mile’ paper [5], Jasmin programs
are given semantics in Coq and compiled with a compiler
verified in Coq, but reasoning about the security and cor-
rectness of Jasmin programs is done only after an unverified
translation to EasyCrypt. In this paper, we close this gap by
providing a verified translation from Jasmin to SSProve. Stay-
ing in Coq not only allows us to reduce the trusted computing
base, but it also facilitates reusing existing mathematical Coq
libraries [3, 30] to verify Jasmin implementations.

Contributions. We formally connect three existing tools,
Hacspec, Jasmin, and SSProve, into a unified foundational
Coq framework for the end-to-end verification of high-speed
cryptography (Figure 1). This includes the following novel
contributions:

e We devise a new translation from Hacspec specifica-
tions to imperative SSProve code. In contrast to the
existing functional translations, it allows us to reason
about the stateful behavior of Hacspec.

e We provide a translation validation infrastructure, which
automatically produces Coq proofs of program equiva-
lence between the results of this imperative translation
and those of a more standard functional translation.
We do this by performing a compositional symbolic
evaluation, relating imperative code to its mathemati-
cal model.

e We connect the Jasmin language and verified compiler
to SSProve, by providing a translation of Jasmin source
code to SSProve. We overcome the challenge created
by the fact that SSProve only supports global state
while Jasmin programs can use local state.

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

e We give a mechanized proofin Coq that this translation
from Jasmin to SSProve preserves Jasmin’s operational
semantics.

e We demonstrate the usefulness of our approach on a
case study by producing a foundational end-to-end
Coq proof of an efficient AES implementation. We
start from an existing Jasmin implementation of AES
using the Intel AES-NI instructions for hardware ac-
celeration [23] and prove (in ~2500 lines of Coq code)
that it conforms to a Hacspec specification of the AES
standard [20]. Finally, we instantiate a PRF-based sym-
metric encryption scheme with the implementation of
AES, and use SSProve to prove IND-CPA security of
this scheme under the (standard) assumption that AES
is a pseudo-random function (PRF).

Outline. We start by giving an overview of our method-
ology and illustrating it on a very simple one-time pad ex-
ample (Section 2). We then discuss necessary background
(Section 3), before diving in the two formal connections we
establish: the one between Hacspec and SSProve (Section 4),
the other between Jasmin and SSProve (Section 5). We finally
present the AES case study (Section 6), before discussing re-
lated (Section 7) and future work (Section 8).

2 Foundational End-to-End Verification,
from Specification to Efficient
Implementation

In this section, we first give an overview of our methodology
following Figure 1 and then demonstrate its workings on
the very simple example of a one-time pad. At a high level,
we provide a foundational framework for proving the equiv-
alence between a specification in Hacspec and an efficient,
low-level implementation in Jasmin, by translating both to
imperative SSProve programs. Once translated, we relate
the programs and prove properties about them in Coq using
SSProve’s probabilistic relational Hoare logic.

2.1 Workflow

The workflow is illustrated in Figure 1. Starting from an infor-
mal description, such as an official standard (e.g., published
by NIST or IETF) for a cryptographic primitive or proto-
col, one uses a subset of Rust with a simple, well-defined
semantics to develop a Hacspec specification.! We then
automatically translate this specification in two ways:

e once to the purely functional language of Cogq; this
translation produces a functional specification; and

e once to the imperative language of SSProve; this trans-
lation produces an SSProve specification.

The functional translation [35] targets Coq’s mathematical
language, and is similar to the usual functional semantics

In fact, Hacspec is directly used in the upcoming hash-to-curve IETF
standard [22] for writing a reference implementation.

32

CPP °24, January 15-16, 2024, London, UK

of Hacspec in F* and EasyCrypt. The imperative translation
serves as a stepping stone towards a Jasmin implementation,
which is inherently imperative.

We then perform translation validation [33] to automati-
cally construct an equivalence proof in Coq, which formally
shows that the functional and imperative Hacspec transla-
tions produce equivalent SSProve code from a given Hacspec
program. More specifically, we prove that in a clean state,
the program produced by the imperative translation will
return the same value as the one produced by the functional
translation. The proof is conducted in SSProve’s relational
Hoare logic (see Section 3.3.4).

The second part of our framework concerns efficient cryp-
tographic implementations written in Jasmin. We imple-
mented a translation from Jasmin to the imperative language
of SSProve and proved that it preserves semantics. This proof
is entirely mechanized in Coq, which is possible because both
SSProve and Jasmin already have formal semantics in Coq [4-
6, 25]. So from the same Jasmin implementation (1) we can
produce an assembly implementation using the existing
Jasmin compiler, which was proved in Coq to preserve the
source language semantics [4, 25]; and (2) we can obtain the
Jasmin Coq AST of the Jasmin implementation, which we
then translate to an SSProve implementation in a way that
we proved to preserve semantics.

We are now in a position to reason about the SSProve im-
plementation using the relational probabilistic Hoare logic
of SSProve. On the one hand, we can conduct an equiva-
lence proof between the SSProve implementation obtained
from Jasmin and the SSProve specification obtained from
Hacspec. On the other hand, we can connect the trans-
lated Hacspec specification with security proofs done in the
SSProve framework. These proofs use the standard security
games from the cryptographic literature [13, 24, 36, 38].

Formal Guarantees. By combining the correctness theo-
rems of the Jasmin compiler and our translation to SSProve,
we get the following corollary: for any function in a Jas-
min program with well-defined semantics, there exists a
corresponding compiled assembly function and translated
SSProve function with the same semantics, i.e., which maps
equal arguments to equal results and which modifies mem-
ory in an equivalent manner. In particular, the semantics
of the SSProve and assembly functions agree and we can
prove the properties of the assembly program by analyzing
the corresponding SSProve program; probabilistic proper-
ties cannot however be carried to the assembly level, since
the semantics there are deterministic. Note that we inherit
some assumptions from the compiler proof (e.g., assuming
sufficient stack-space) and introduce some in the transla-
tion proof (e.g., functions cannot use while-loops), see also
Section 5.

https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve

CPP °24, January 15-16, 2024, London, UK

2.2 One-time Pad Example

We now illustrate this methodology using a very simple
example: We construct a one-time pad (OTP) from exclusive
or (XOR). This toy example should convey intuition on the
methodology. A more interesting case study for the AES
encryption scheme is presented in Section 6. This section
is to get an idea of the workflow and the ideas, however,
we will introduce the background theory in more detail in
Section 3.

2.2.1 Specification. The Hacspec specification for xor
takes two 64-bit words as input, puts them into mutable
variables, and computes their XOR (~ in Hacspec). The result
is stored in a mutable variable?, which is then returned.

fn xor(wl : u64, w2 : u6d) -> u6d {
let mut x : ubd = wi;
let mut y : ubd = w2;
let mut r : u64d = x ~ y;
r

}

Our framework produces an automatic translation of this
code to the following Coq function of type both.

Definition hacspec_xor (wl : int64) (w2 : int64) :=

letbm x_0 : int64 loc(x_0_loc) := wl in

letbm y_1 : int64 loc(y_1_loc) := w2 in

letbm r_2 : int64 loc(r_2_loc) := x_0." y_1in
r_2.

Here letbm stands for “let bind mutable”. The type both can
be projected both to pure Coq and to SSProve code (see
Section 4.3), resulting in the following two functions:

Definition hacspec_xor_purexy := x ." y.

Definition hacspec_xor_state (x y : int64) :=
put x_loc := x j;

temp_x < get x_loc ;;

y 5

temp_y < get y_loc ;;

put y_loc :=
put r_loc := int_xor temp_x temp_y ;;
temp_r < get r_loc ;;

ret temp_r.

For achieving translation validation, the both type also car-
ries an equivalence proof between these two functions:

Vxy F { A '(ho, hy), T}
hacspec_xor_statexy =
ret (hacspec_xor_pure x y)
{ A "(vo, ho) '(vi, h1), vo =v1 }.
2.2.2 Jasmin Implementation. A Jasmin implementa-
tion of xor could look as follows.

%This use of mutability is for illustrative purposes only.

33

Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters

export fn xor(reg u64 x, reg u64 y) -> reg u64d {
reg ub4d r;
r = x;
r "=y,
return r;

}

It takes two register-allocated arguments x and y (as indi-
cated by the reg keyword) and writes the XOR of x and y
into the return register r.

2.2.3 SSProve Implementation. The next step is to trans-
late the Jasmin code to the following SSProve function.

Definition JXOR idO w1l w2 :=

put x = wl ;;
put y = w2 j;
put r :== wl & w2 ;;

rl <« getr ;
ret ril.

While this readable code is not the literal output of the trans-
lation, it is the result of some careful (but semi-automated
and verified) unfolding and simplification. The produced
code also takes an “identifier”, id0, as input: this determines
which locations on the heap it will use for its local memory.
This technical detail will be explained in Section 5 and can
safely be ignored for now.

2.2.4 Equivalence of Implementation and Specifica-
tion. Now that we have both translations to SSProve, we
can prove that they are equivalent in our program logic.

Theorem xor_equiv : VY id0 wl w2,

F{ A '(h, hi), T}
JXOR id0 w1l w2 =

{ A "(vo, ho)

The precondition is a predicate over the two initial heap
states and the postcondition is a predicate over the two final
heaps and values. The notion of equivalence we use here to
relate the two functions only requires the return values vy,
vy of the two programs to be equal, provided we run them
both on the same inputs. In particular, we do not make as-
sumptions or restrict how the two programs use the heaps hy,
h;. The programs are thus allowed to use different locations
to store their intermediate values. This theorem is proved
using the rules of the relational program logic of SSProve [1].

hacspec_xor_state wl w2
“(vi, hi), vo = vi }.

2.2.5 Security Proof for the OTP Implementation. We
now prove perfect cryptographic security of the Jasmin im-
plementation of OTP using XOR. To this end, we first need
to define some terminology. In SSProve a package is a finite
set of procedures that might contain calls to external proce-
dures. The set it implements is called its export interface and
the set on which it depends its import interface. A game is a
package with no imports and a game pair is a pair of games
that export the same procedures. These can be used to model
cryptographic games, e.g., a game pair might consist of a

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

real encryption scheme and an oracle: these have the same
interfaces but different implementations.

For OTP we define the game pair consisting of an imple-
mentation of OTP using the Jasmin code and an implemen-
tation which is obviously secure. The Jasmin game is the
package JOTP_real exporting the single procedure:

Definition JOTP idO m :
k_val « sample uniform ('word n) ;;
JXOR idO m k_val.

We already have a security proof for the package 0TP_real
exporting the single procedure:

Definition OTP m :
k_val « sample uniform ('word n) ;;
ret m & k_val.

This game is already proven to be indistinguishable under
chosen plaintext attack from an implementation where the
message is chosen at random. The statement and proof are in
the SSProve library. This is done by proving that, when the
input is disregarded and a random message is encrypted, the
advantage of an attacker in distinguishing between 0TP_real
and a game OTP_ideal is zero.

If we can prove that JOTP_real is perfectly indistinguish-
able from 0TP_real, then we can combine the two results us-
ing the triangle inequality for advantages of games (Lemma
1 in the SSProve paper [1]) and prove that an adversary also
cannot distinguish between JOTP_real and 0TP_ideal, i.e.,
the Jasmin implementation is IND-CPA. That is, we only
need to prove the following theorem.

Lemma JOTP_OTP_perf_ind id: JOTP_real id ~(OTP_real.

Here ~¢ means that the advantage of an adversary trying
to distinguish between the two games is zero. To prove this
lemma we use Theorem 1 from the SSProve paper [1], which
allows us to conclude if we can prove the following code
equivalence for all m and some stable invariant inv:

F{A '(so, s1), inv (sp, s1) }
JOTP idOm ~ OTP m
{ A '(bo, S()) '(bl, S]), by = b;y A inv (So,sl) }

For the precise definition of stable invariant see Section 4.2 of
the SSProve paper [1]. In our case, we can use the invariant
heap_ignore, which asserts that both heaps are preserved
during execution if the locations used by JXOR are ignored.

Combining this result with the already established security
of OTP_real we get security of JOTP_real.

Theorem unconditional_secrecy_jas: V LA A,
fdisjoint LA xor_locs — ValidPackage LA
[interface #val #[i1] :
A_export A —
Advantage IND_CPA_jasmin A = 0.

‘word — 'word]

That is, for all valid adversaries A with a matching interface,
and all regions of adversarial memory LA, if the adversary

34

CPP °24, January 15-16, 2024, London, UK

cannot use the same locations as JXOR then their advantage
in distinguishing between JOTP_real and 0TP_ideal is zero.

3 Background & Technical Preliminaries
3.1 Hacspec

Hacspec is a High Assurance Cryptography SPECification
language [15, 27, 31] aiming to provide a common language
to programmers, cryptographers and proof engineers. It pro-
poses to make future internet standards, such as those pub-
lished by IETF and NIST, machine-readable. Hacspec is a
subset of Rust which makes it executable and accessible to
cryptographic engineers.

The Hacspec language was carefully crafted to have a
functional semantics, in which assignments are translated
to let-expressions. The Hacspec tool comes with functional
translations to the purely functional languages of several
proof assistants, currently F*, Coq, and EasyCrypt. As such
it is a convenient tool to share specifications across proof
assistants.’ Hacspec also comes with an operational seman-
tics [31], but since the semantics is not formalized in the back-
ends, the functional translation cannot be verified against
it. Instead, this translation constitutes the authoritative se-
mantics. This motivates our choice to relate our imperative
translation via translation-validation®.

Currently, all Hacspec backends use a functional seman-
tics. However, both in EasyCrypt and in Coq/SSProve, one
could also choose to use a translation to an embedded im-
perative language. This can be seen as one of the benefits
of Hacspec, as anyone familiar with either functional or
imperative coding paradigms will understand the Hacspec
specification. We will explain how to do so in Section 4.

3.2 Jasmin

Jasmin [4] is a low-level language designed for implementing
high-speed cryptography, with a verified compiler backend
supporting the x86 and ARM architectures. The language has
a formal big-step operational semantics in Coq. The Jasmin
compiler is also implemented and verified in Coq, in the sense
that it preserves the semantics of the Jasmin source [4, 5] and
also that it does not introduce timing side-channel attacks [6].
We give a condensed overview of Jasmin, focusing on the
aspects that are interesting for the sake of our discussion, and
limiting the explanation to a few representative examples.
For more details please see the Jasmin paper [4].

3This also allows one to combine code generated from different proof as-
sistants. For example, one could combine a hash function from F* and an
elliptic curve implementation from Cog, both of which would be specified
in Hacspec, verified, and then extracted to C (or Rust, or ASM). This is the
methodology proposed in the libcrux library [27].

4The operational semantics of Hacspec would be a good target for future
formalization.

CPP °24, January 15-16, 2024, London, UK

3.2.1 The Language. Jasmin is an imperative language
with structured control flow in the form of loops, condi-
tionals, and procedure calls. Jasmin has types for booleans,
integers, bit-words of various sizes, and arrays. Despite these
high-level features, the Jasmin compiler produces predictable
assembly code, which enables efficient and secure crypto-
graphic implementations. For instance, the programmer can
use architecture-specific assembly instructions and can spec-
ify whether procedure-local variables should be stored in
registers (using the reg keyword) or on the stack (using the
stack keyword). Jasmin’s operational semantics was care-
fully crafted to hide low-level details such as the distinction
between the storage types reg and stack. Our correctness
theorem for the translation from Jasmin to SSProve, like Jas-
min’s compiler correctness theorem, is proven with respect
to this operational semantics, and we can thus safely ignore
such distinctions.

A Jasmin program P consists of a list of non-recursive
function definitions, associating to each function name f a
list of variables used for arguments P(f) param, variables used
for returning results P(f) s, and a command, i.e., a sequence
of instructions P(f)pea, for the body of the function.

Instructions include assignments, operators, conditionals,
for and while loops, and function calls. Expressions occur-
ring in instructions include variable and array access, arith-
metic and logical operators, as well as assembly operations
such as shifts, increments, etc.

3.2.2 Jasmin State. Jasmin features both global and local
state, denoted by a pair (m, p) of a global memory m and
local variable map p. A variable is local when it is declared
within a function, and global when declared at the top level.
We will write p[-] and p[- « -] respectively for local
variable map lookup and update. For global state, we will
write m[- |; and m[- « -]; for lookup and storage of size i,
given in bits (possible values are 8, 16, 32, 64, 128, 256). Global
state is indexed by integers (pointers) and local state by
variables (strings). Note that looking up memory in Jasmin
can fail, so we will abuse notation by denoting by m[p]; = v
that v is stored at p in m and that it is valid to make a read
of size i at p in m. We will do the same for writes.

3.2.3 Jasmin Operational Semantics. The operational
semantics of Jasmin is mostly standard. A judgment of the
form (c | (m,p)) || (m, p’) means that for an initial state
(m, p), execution of the command ¢ terminates in the final
state (m’, p’), and (e | (m, p)) [exp v means that the expres-
sion e evaluates to the value v under state (m, p) (expressions
can only read, not modify the state). All judgments are im-
plicitly parametrized by an ambient program (i.e., list of
function definitions), which will not be mentioned explicitly
unless required. For instance, in the rule for assigning a local
variable in Figure 2 we start by evaluating the expression e to
v. We then look up the type a of the variable x, and perform

35

Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters

a truncation® of v at type a, yielding v’ compatible with the
type of x. Finally, we update the local state to p[x « 0’],
while the global state remains unchanged.

ASSGN
(el(mp)) lepo a=ty(x) o =|o|*
(x=e|(mp)) | (mp[x < 2])
FUNCALL
(ei | (m,po)) Uexp i fori=1,...,k
(f(or,..o0) [m) Yean ((Wi, ..., wp) [m')
(xj=wj|(m',pj-1)) I (m,pj) forj=1,...,n

(X1, xn = flen.. e) | (mopo)) U (m', pn)

CALLRUN
let po=0 and ¢ = P(f)poay
and let Yi = (P(f)param)i and Xj = (P(f)res)j
(yi=0vi|(mpi-1)) L (mp;) fori=1,... .k
(c|(mpr)) L (m',p")

wy = o' [x 11 forj=1,...n

(f(oy,..

o) [m) Bean (Wi, oo, wn) [m”)

Figure 2. Excerpt of Jasmin operational semantics

The main subtlety for translating Jasmin to SSProve arises
from function calls and their treatment of local state. The
execution of function calls in Jasmin is split into two rules.
The perspective of the caller is captured by FuncaLL: We
evaluate the arguments e; and perform the call to the function
f according to the callee’s perspective. We obtain a new
global state m’ and store the resulting values w; in the caller-
local variables x;. Jasmin’s type checker guarantees that the
number of returned values equals the number of variables.
Crucially, when switching from caller to callee, we retain the
local state py and pass only the global state m to CALLRUN
as witnessed by the use of ||,y relating pairs of instructions
and global memories and values and global memories.

To describe the callee perspective, we write p, for the
empty local state, and c, y;, and x; for the body, parameter-,
and result-variables of f respectively. Each argument v; is
stored in the local variable y; according to the definition
of parameters of P(f)param. We then execute ¢ from state
(m, px), yielding (m’, p”). We obtain the values wy, ..., w,
by reading the result variables x; from the local state p’
and truncating as necessary. Finally, the local state p’ is
discarded, and the result values and updated global state m’
are returned.

5This truncation only exists at the high level to mimic the implicit trun-
cations happening at the assembly level. In practice, the types of v and x
mostly agree and the truncation can be simplified away.

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

3.3 SSProve

SSProve is a Coq library for modular cryptographic proofs
introduced by Abate et al. [1]. We only review the concepts
needed to understand the current paper. More details can be
found in the extended version of the SSProve paper [25].

3.3.1 Code. In this paper, we de-emphasize the probabilis-
tic capabilities of SSProve, as they are not currently reflected
in Jasmin. Thus, for our purposes, SSProve essentially em-
beds a stateful language inside Coq using a monad called
raw_code. In raw_code A one can (1) embed any pure value
x of type A using ret x, (2) read from a memory location
¢ to a variable x, and use x in a continuation k, written
x « get £ 3 k x,(3) write a value v to a memory location
¢ and then continue with k, written put ¢ 3 k, (4) sequen-
tially combine u : raw_code Xandk : X — raw_code A us-
ing the bind operator that we write x « u ;; k x. Itis also
possible to sample from a distribution D in this monad using
x « sample D ;; k x as shown in Section 2.

3.3.2 Memory Model. Memory locations consist of a nat-
ural number and a type that together serve as an index in
a global shared memory. This global state is represented as
a map from locations to values. We say that a state is valid
for a set of (typed) locations when all locations point to val-
ues of the matching type. Note that to be able to use the
type in the key of the memory, we must in fact use codes
of types; since SSProve is built for probabilistic programs,
these codes represent types on which one may build (dis-
crete) distributions. In type-theoretic terms, they encode a
universe of datatypes choice_type which represents a sub-
set of mathcomp’s choiceType [30, §8.3]. For the purposes of
our translation, we use a modified version of SSProve where
choice_type is extended to include sums, words and lists.
This allows us to encode all the types needed to represent
Hacspec and Jasmin programs. Memory is simulated using
a structure we call heap, essentially a map from locations
to values. We would like to stress the fact that in SSProve
the memory is global, in contrast to Jasmin’s function local
state. Thus, one must take care to generate code without
overlapping locations. We address this in Section 5.

For a heap h, location ¢ and value v, we will write h[I] and
h[¢ « v] for heap lookup and storage (as for Jasmin state).

3.3.3 Packages. Another defining feature of SSProve is
that of packages. Packages are used extensively to com-
pose modular security games in the style of state-separating
proofs [17]. Since our methodology allows us to reuse ex-
isting security proofs [25], we will not get into the details
of security proofs, so we only introduce packages briefly.
Packages are collections of procedures that can all refer to
the same set of locations and invoke certain procedures that
are part of an import interface. The signature of this collec-
tion defines the export interface of the package. Packages can
thus be combined modularly to create bigger packages. For

36

CPP °24, January 15-16, 2024, London, UK

instance, a package can be linked to another that implements
its import interface or they can be composed in parallel to
export the union of their respective export interfaces.

3.3.4 Relational Hoare Logic. Finally, SSProve features a
(probabilistic) relational Hoare logic that allows us to prove
the relational properties of programs. Once again, we will
focus on the stateful but deterministic fragment. In this pro-
gram logic, we prove judgments of the form

F{¢} co ~ o {¥}

where ¢y and c¢; are two code pieces we compare and ¢ and
i are respectively a pre- and a postcondition relating (1) the
initial heaps (for ¢); (2) the final heaps and final return values
of both code pieces (for). For deterministic code, this is
equivalent to: for all initial memory states my and m; such
that ¢ (mg, my) holds, running c; in state m; will yield final
state m; and final value v; such that (v, m{)(v;, m}) holds.

SSProve comes with a number of rules for this logic and
provides tactics to facilitate writing proofs. Moreover, one
can fall back on the semantics above to prove judgments [25].

3.4 Interoperability

For the sake of getting Hacspec, Jasmin, and SSProve to
interact smoothly, we had to extend each of them in a minor
way. We did not, however, make any modifications to the
core projects that would change the interpretation of any of
the statements that can be found in the published literature.

Specifically, besides the translations which constitute the
core contributions of this work, we made the following ad-
ditions. For SSProve, we added sum types to represent the
result types of Hacspec. We also added bitwidth-indexed
machine words as well as lists. For Jasmin, we added the abil-
ity to pretty-print the Coq abstract syntax tree of a parsed
Jasmin program, and we added the definition of the Intel
AES-NI instructions [23] to Jasmin’s x86 semantics, since the
AES-NI instructions are used in the AES case study. Hacspec
remained unchanged.

4 Hacspec & SSProve

Hacspec facilitates proving the correctness of efficient imple-
mentations with respect to a specification by translating it
to multiple proof assistants. We further this goal by adding a
translation from any valid Hacspec specification to SSProve.
This imperative translation is accompanied by a pure trans-
lation, which adds a wrapper around the existing Coq trans-
lation to embed it into SSProve. We can thus compare the
imperative and pure translations using SSProve’s relational
logic and automatically generate a proof stating that they
return the same values.

CPP °24, January 15-16, 2024, London, UK

4.1 The Functional Translation

The pure translation constitutes a minor modification of Hac-
spec’s existing Coq backend [35] that we undertook to facil-
itate the connection to Jasmin. Coq does not provide a stan-
dard library for machine integers, so the existing backend
chose the CompCert library to model machine integers [28].
Jasmin uses its own word library. In the long run, we would
hope for a unified word library in the Coq ecosystem. Mean-
while, we changed the backend to use Jasmin words.

We translate for-loops as a fixed point with an accumulator
of all the mutable variables changed inside the loop. Hacspec
has support for early return of option or result types. We
model these early returns using the option and error monad.
We thus need a fold operation that respects the monadic
operations to allow early returns in for-loops.

4.2 The Imperative Translation

Since we provide the first translation from Hacspec to an
imperative programming language, we need to extend the
information gathered in the translation from Hacspec to the
various backends. SSProve needs information about what
memory locations and functions are used in a given scope.
To compute this, we add static dependency analysis to the
Hacspec pipeline. This is done by walking the AST for every
block of code and adding a unique memory location for each
mutable variable. In a second pass, we then unify the memory
locations used by all the local function calls, to get the total
set of memory locations a function might change.

The translation evaluates arguments passed to function
calls or operators before evaluating the function or operator.
This is done by binding the arguments to temporary values,
which are then passed to the function. This makes it easier
to prove equality to another SSProve implementation, as we
can first prove that all the arguments are equal, and then
show that the functions agree on equal input.

A subtlety arises from the fact that Hacspec supports early
return statements: x = e? is operationally equivalent to

x = match e { Some(v) => v, None => return None }

In particular, if e evaluates to None, the ambient function
in which the statement x = e? occurs returns early with
the result None. Since SSProve’s raw_code does not support
control effects, we cannot directly represent this return. We
instead embed Rust code with early returns into the option
monad. To ensure that this encoding interacts well with the
effectful operations of SSProve which manipulate state, we
define a special bind operation, combining the two monads.

Definition obind (x : raw_code (option A))
(f :

= t_X «— X 3

A — raw_code (option B)) : raw_code (option B)

match t_x with Some s = fs| None = ret None end.

The Hacspec code we translate carries sufficient typing in-
formation to determine whether a function may return early.

37

Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters

We leverage this information to select between this custom
bind operator and SSProve’s standard bind. For example:

x=£fW7 ; y=gx ;y+2
is translated to the following SSProve code:

temp_x « £(v) 3
obind temp_x (A x, temp_y « g(x) ; temp_y .+ 2)

4.3 Equivalence Between the Hacspec Translations

On the one hand, it is often easier to define and prove prop-
erties for a functional specification. On the other hand, it
is easier to show an efficient imperative implementation
equivalent to an imperative specification. So, it is desirable
to derive an equality between the imperative and functional
translations. We automatically generate such a proof, as part
of the translation from the Hacspec specification. To achieve
this we first define a record both, which has projections to a
piece of code for the functional translation and for the im-
perative translation. It also contains the proof of equivalence
for the two pieces of code. We traverse the AST building
the functional translation, the imperative translation and
their equivalence at the same time. This is achieved by using
compositional blocks for the control structures of Hacspec.

An example of such block is the one used for 1et expres-
sion in Hacspec, where the functional translation is a func-
tional let binding in Coq, while the imperative translation
uses bind in SSProve. The equivalence can be proven using
the bind rule in SSProve, since we have a proof of equality of
the arguments and a proof of equality of the rest of the code
bodies. Other blocks are loops, mutable let bindings (where
a location is used, as shown in Section 2.2.1), early returns,
operator calls, lifting pure values, etc. We can therefore get
the full translation to the imperative and functional code,
together with the equality between them, by chaining these
compositional blocks. This also requires us to define all the
library functions in Hacspec in the both type. Using this
combined type, we can write elements in a style where the
translation looks close to the original specification and can
be made more readable by the notation engine of Cogq.

5 Jasmin & SSProve
5.1 Memory

A major difference between the Jasmin and SSProve seman-
tics is how memory is handled: SSProve only has a global
notion of memory and Jasmin supports both global and local
variables. To model local variables in SSProve, we parame-
terize all translated code over a “base stack frame ID” which
reserves an (a priori unbounded) region of SSProve’s global
memory for local variables. Then instantiating translated
code with a concrete base stack frame ID correctly assigns
new stack frame IDs to all its called functions. In particular,
we prove that variables translated with different stack frame
IDs never overlap, i.e., translation of variables is injective

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

w.r.t. IDs. We store the Jasmin global memory in a map (from
integers to bytes) at a static location called MEM.

5.2 Program Translations

We now describe our translation from Jasmin to SSProve,
meaning the translation of programs, but also of types, val-
ues, expressions and commands. As a first step, we use the
Jasmin compiler to pretty-print the internal AST correspond-
ing to a Jasmin source program to Coq syntax. Since this
AST datatype was extracted from Coq in the first place, it
amounts to ‘de-extracting’ it back to Coq. Our translation
thus translates Coq’s datatype of Jasmin programs to SSProve
programs (i.e., the raw_code monad).

5.2.1 Types and Values. The only base types missing
from SSProve’s choice_type (the restricted set of types which
a raw_code can return; see Section 3.3.2) were words and ar-
rays. Following Jasmin, we use the coqword library’s type
of words, which is based on the mathcomp library [30]. We
represent arrays as maps from integers to bytes. The only
minor difference is our implementation of maps differs from
Jasmin. Using similar types makes it easy to embed Jasmin
values into SSProve values (via the identity) for all except
array values. We denote the function taking Jasmin values
to SSProve values by translate_value.

5.2.2 Expressions. For the translation of expressions (de-
noted translate_pexpr) we have to be careful and do the
right casts and truncations, as dictated by the semantics of
Jasmin: e.g., when looking up in an array, the index is always
cast to an integer type. For the translation of function ap-
plications in expressions (additions, subtractions, etc.), we
reused the semantics from Jasmin expressions, by transport-
ing values back to Jasmin types, applying the operations, and
then transporting back to SSProve types. Note that this trans-
port is only non-trivial for arrays. This simplifies the proof
significantly, only requiring us to prove that all operations
are invariant under this transport.

5.2.3 Instructions. The main difficulty in translating in-
structions is translating function calls; for calls to operations
we could mostly use the same solution as for expressions and
for for-loops we simply iterate the translated body. To be
able to call functions, we choose to let our translation keep
track of previously translated functions, and only allow these
to be called; this avoids cyclic calls and recursion (which are
always rejected by the Jasmin compiler). Furthermore, we
make sure to call these translated functions with a fresh
stack frame ID to avoid collisions between local variables.

Note that we currently do not translate Jasmin while loops,
as they do not have a correspondent in SSProve. This does
not constitute a conceptual problem in practice, since for-
loops are sufficient for most cryptographic routines.

5.2.4 Programs. We translate Jasmin programs, which
map function names to function declarations (Section 3.2.1),

CPP °24, January 15-16, 2024, London, UK

to maps from function names to SSProve functions taking
an ID and a list of inputs to SSProve code.

5.3 Unary Deterministic Judgments

SSProve originally supported only relational judgments of
the form + {¢} ¢y ~ c¢1 {¢}, as presented in Section 3.3.
For the sake of our correctness theorem, we want to relate a
translated Jasmin term c, to the value v it evaluates to, i.e.,
c1 is always of the form ret v. Since Jasmin’s semantics is
deterministic, we do not need the full power of a probabilistic
judgment. We thus extend SSProve and build a new unary
judgment on top of the relational logic, to deal with the
special case where we relate a raw_code with a return value:
F {¢} ¢ | o {y}. Here ¢ is a precondition on the initial
state of ¢, while ¥ is a postcondition on the final state after
running c. The postcondition no longer mentions a final state
or return value for the right hand side, instead the return
value v is part of the judgment. We define + {¢} ¢ | v {¢}
as the following judgment relating ¢ to ret v:

F {(mo, m1). ¢ me} ¢ ~
ret v {(ap, my), (a1, m}). y my A ag = ay A ay = v}

The precondition only considers the memory of the left-hand
side, while the postcondition also states that both sides must
produce the value v.

While this unary judgment is conceptually simpler than
the relational logic, we have found it beneficial to reuse the
existing theory instead of starting from scratch. An advan-
tage of this is that we can easily leverage the rules of the
relational program logic and the tactics provided by SSProve
to prove unary judgments. Moreover, we establish a precise
connection between the two logics by proving that when-
ever c is free of sampling operations, the judgment above
is equivalent to saying that running ¢ on any initial state
m such that ¢ m will yield return value v and final state m’
such that m’. For instance, we obtain the expected rules
for values, sequential composition, and writing to the heap.

Vm.¢gm=—ymAv=0

F{¢} retov | o' {y}

F{gy e L ud{sl +{& ku | o {y}
FAgr x —css kx | o {y}
F{Am3Im,¢m)Am=m'[t —0]} r | w {¢}
F{¢} put fo;s r | w {y}

Other rules can also be derived straightforwardly from
the definition of the unary judgment as analogues of the
relational rules, which are detailed by Haselwarter et al. [25].

CPP °24, January 15-16, 2024, London, UK

5.4 Correctness Theorem

We prove that our translation preserves the semantics of well-
defined programs. To do this we define a relation between
Jasmin memory states and SSProve memory states. First, we
relate the global Jasmin memory to the “global memory map”
stored on the heap in SSProve. We say that the global Jasmin
state m is related to the heap h when, if one can successfully
read a single byte at an address from the Jasmin memory,
then one can look up the corresponding value in the “global
memory map” stored at MEM on the SSProve heap:

m~h:=Vpou.m[pls =v= h[MEM][p] =0

To relate the local memory of Jasmin and our encoding
of local memory in SSProve, we define a relation between a
variable map p and a heap h relative to a stack frame ID ..
We write h[x]* for the lookup of the variable x on the heap
relative to ID 1. A variable map p is related to the heap h
w.r.t. 1 if successfully looking up a variable x in p implies
that looking up x on h relative to ¢ yields the same value:

p~h=Vxou. plx]=0v=h[x]'=0

Now, the relation between a Jasmin memory pair (m, p)
(of global and local state) and an SSProve heap is not just the
conjunction over all these relations, since we need to know
that a function can make an arbitrary number of function
calls, each with their own local state, and not run out of
space on the heap. To state this we need some terminology:
We say that a stack frame ID 1 is fresh w.r.t. a heap h when
po ~; h holds, where py is the empty variable map. We
assume that we have a prefix order < on stack frame IDs
and say that a stack frame ID s is valid w.r.t. a heap h when
all strict successors of s are fresh w.r.t. h, i.e., forall s > s,
po ~s h. Furthermore, we say that two IDs s; and s, are
disjoint, when there is no ID which they are both a prefix
of. Concretely, we require for all IDs s that s; < sands; <'s
do not both hold simultaneously. We assume that storing at
disjoint ID locations preserves values: if s; and s; are disjoint
then Vx,y, hly <« 0]%[x]* = h[x]*.

For a variable map p, two stack frame IDs ¢, o (main and
sub-ID) and a set I of IDs we say that the tuple (p, 1, 0,1) is a
stack frame. We say that a stack frame (p, 1, 0, 1) is valid
w.r.t. a heap h when the following conditions hold: (1) ¢ is
valid wrt. h, (2) p ~, h,(3) 0 ¢ I, (4) forallo’ € I,1 < o/, 0’
is disjoint from o and ¢ is valid w.r.t. h, (5) for all 6/, 6" € I,
o’ and ¢” are disjoint.

The intuition for a valid stack frame (p, 1, 0,1) is that p
should be related to the main stack frame ID (1, and the sub
stack frame ID ¢ should be a valid ID from which the current
function can spawn new functions with fresh memory; I is
there to keep track of which IDs are currently in use and to
which variable maps they relate. Note that the set I is only
needed for the proof of correctness, and is not actually used
in the translation of a given program.

39

Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters

A stack is then a list of stack frames. The empty stack is
denoted by Sy. A stack frame (p, 1, 0,1) is disjoint from a
stack S when 1 is disjoint from all sub IDs and IDs occurring
in sets of the stack frames on S. A stack S is valid w.r.t. a
heap h when either S is empty or S = F :: S’ where S’ is a
valid stack and F is a valid stack frame disjoint from S’.

Using these constructions we can finally define our rela-
tion on Jasmin and SSProve states. A Jasmin state pair (m, p)
is related to the heap h w.r.t. the stack S, which we write
(m, p) ~s h, when the following conditions hold: (1) S is
valid w.r.t. h, (2) m ~ h, (3) p is the variable map at the top
of the stack, i.e., the top of the stack is of the form (p, 1, 0, I).
This relation satisfies two key lemmas, which are needed to
prove the correctness of our translation.

Lemma 1 (Push empty stack frame). If (m, p) ~(p,.0.1):5 h
and oy, 03 are two disjoint IDs with o < o1, 09, then

(m, po) ~(p0,061,01,0)::(p,1,02,1):S h.

Lemma 2 (Pop stack frame). Let F; = (p;, 1;, 03, I;), then if
(m» PZ) ~Fy:uFy S h then (m’ ,01) ~F:S h.

These two lemmas correspond to (1) calling a function
and assigning it a fresh region of memory for local state and
(2) returning from a function call to its caller, accounting for
the operational semantics of Jasmin function calls according
to Figure 2. Note in Lemma 1 that the sub-ID of the calling
stack frame, o, is updated to a fresh ID o5, and that we initial-
ize the callee frame with the same main and sub ID o7, since
when the frame gets pushed in a function call, the callee has
not invoked any further functions yet.

Using this relation, we show how our translation of Jasmin
code relates to its source. For example, if we consider the
function translate_pexpr, which translates Jasmin expres-
sions to raw_code, we get the following correctness lemma.

Lemma 3. Leto be a value, e an expression, s a Jasmin state
pair and S a stack. If (e | s) Jexp 0 then

t {h.s ~s h} translate_pexprSe |
translate_valueov {h.s ~g h}

As evaluating expressions does not have memory side
effects, the relation between Jasmin and SSProve states is
preserved under expression translation.

We now prove the main theorem, which establishes the
connection between function calls in Jasmin and in SSProve:

Theorem 1. Let P be a Jasmin program, (m, p) a Jasmin
state-pair, f a function name, and v;, w; values fori =1,...,k.
Furthermore, let 1, 0, 01, 05 be IDs such that o, and o, are dis-
joint and strict successors of o. If P’ is the result of translating

Pand(f(vi,...,0k) | m) ean {(wi,...,wn) [m") then
F {h (m’ P) ~(p,oI) h}
P’ f 01 translate_values (vy,...
J translate_values (wy,...,wpy)

{h. (m".p) ~(puonr) B}

,Uk)

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

The theorem states that if calling the function f in the
Jasmin program P and global memory m with arguments g
results in the new global memory m’ and returns the values
w, then we can conclude two things:

1. Calling the function at a fresh ID (o7) and with the
translation of the arguments o evaluates to the trans-
lation of the return values w.

2. After calling the translated function, the global mem-
ory m’ is related to heap where we have updated the
sub-ID to a fresh one (from o to o).

This is the expected behavior: calling a function can change
the global but not the local state. We have to update our
sub-ID because the previous one is no longer fresh, as we
might have stored local state inside the function call.

6 AES Example

As alarger case study of our framework, we verify the secu-
rity of a Jasmin implementation of a PRF-based encryption
scheme using AES and prove it equivalent to a Hacspec
reference implementation. The Jasmin implementation and
the general methodology for proving security are similar to
the presentation in EasyCrypt [8], but we use our toolchain
based on SSProve to conduct the formalization.

The workflow for proving security of our AES implemen-
tation is as follows:

1. Implement the encryption scheme in Hacspec and Jas-
min.

2. Translate the two implementations to SSProve code.

3. Prove the two translations equivalent and prove secu-
rity properties of the Jasmin translation.®

We skip implementing the Jasmin code by reusing the im-
plementation from the EasyCrypt and Jasmin tutorial [8],
which relies on the Intel AES-NI hardware acceleration in-
structions [23]. Our reference implementation in Hacspec is
based on the NIST standard [20], and it successfully passes
the corresponding public test vectors [20, 23].

For the security analysis, we prove indistinguishability
under chosen plaintext attack (IND-CPA) of the AES imple-
mentation of the PRF-based symmetric encryption scheme
described below. Concretely, we prove that the advantage
of an adversary in distinguishing the encryption of a mes-
sage from the encryption of a random message is (linearly)
bounded by the advantage of the same adversary in distin-
guishing AES from a PRF. For details on the concrete bounds,
see the SSProve journal paper [25, §2.3].

As was the case in Section 2, we do not have to write a se-
curity proof of the abstract encryption scheme from scratch,
since such a proof, for an abstract PRF, is already present

®Here we deviate slightly from the intended workflow from Section 2 by
doing the security proof on the implementation instead of the specification.
The reason for this is simply that parts of security proof about the Jasmin
implementation were already completed when the Hacspec specification
was added to the project.

40

CPP °24, January 15-16, 2024, London, UK

in the SSProve library [25, §2.3]. To connect this with our
efficient implementation, we need to prove that an adversary
cannot distinguish between the efficient implementation and
the abstract implementation given in SSProve [25, §2.3] in-
stantiated with a Coq implementation of AES.

As in loc. cit., our definitions follow SSP methodology [17].
The PRF-based encryption scheme is given by the code:

Definition PRF_ENC f m :=
k_val < kgen ; enc m k_val.

Here, kgen is a key generation code that uniformly samples

a key on its first invocation and returns a fixed key on sub-

sequent calls. The enc function is given by the code:

Definitionenc m k :=
r < sample uniform N ;;
let pad := f r k in let c :=
ret (r, c).

m & pad in

Here £ is the function which we assume to be a PRF and
which we will instantiate with AES. The PRF is used to gen-
erate a pad from a uniformly sampled nonce r; the ciphertext
is computed as the xor of the message and the pad. For all
functions £ : word — word — word we denote the game
consisting of the single export PRF_ENC £ by PRF_real f.

We reuse the SSProve proof [1, §2.3] by showing that
PRF_real aes is perfectly indistinguishable from the same
scheme with enc replaced by the translated Jasmin code.

The high-level structure of the security analysis of the
implementation is as follows:

1. Write an intermediate imperative implementation di-
rectly in SSProve code.

2. Write a functional implementation directly in Cogq.

3. Prove the equivalence between the intermediate im-
plementation and the functional implementation.

4. Prove the equivalence between the translated imple-
mentation and the intermediate implementation.

5. Connect the equivalences to the existing security proof
of the abstract encryption scheme.

Steps (1) and (2) can also be copied almost verbatim from
the EasyCrypt development: the syntactic similarities of the
EasyCrypt and SSProve codes make the translation very
straightforward. For the proofs in steps (3) and (4) we can
reuse some parts, e.g., the loop invariants, but in general the
differences in the programming languages and the underly-
ing proof assistants require new proofs.

6.1 Translation

As mentioned in Section 2, we start by printing the Coq
ASTs of all the involved functions during Jasmin compilation.
Then we use the translation described in Section 5 to obtain
SSProve code for each function used in the implementation.

CPP °24, January 15-16, 2024, London, UK

6.2 Specification

Next, we write intermediate specifications for the Jasmin
functions. Compared to the example in Section 2, these cor-
respond to the pure Coq XOR function. As mentioned, we
take inspiration from the specifications in the EasyCrypt and
Jasmin tutorial [8]. This step removes translation artefacts
(e.g., compiler-generated memory locations) and allows us
to focus on proving the underlying logical statements.

6.3 Equivalences for Intermediate Code

Then we prove that our intermediate implementations are
equivalent to functional (stateless) Coq functions. The state-
ments we prove are generally of the form:

b {(mo,m1). ¢ (mo,m1)} ci ~

ret (fi) {(ao, mp), (a1, m}). ¢ (mg,m}) A ao = ar}
where i is arbitrary input, c is the intermediate SSProve code
and f is the pure Coq function. Note that we also prove
that these equivalences preserve the precondition ¢; for the
equivalences to hold we usually have to assume that ¢ is
stable w.r.t. memory locations used by c.

Even though f is usually stateless, we have to keep the
heap of the right-hand side in mind, since it might be relevant
in certain contexts; otherwise we could have used the unary
judgments of Section 5.3.

6.4 Equivalences for Translated Code

When reasoning about the code generated by our translation
from Jasmin to SSProve, we have to prove equivalences of
the following form:

+ {(m(), ml). ¢ (mo, ml)} PPFidi ~

ci {(ao,my), (ar,m}). ¢ (my,m}) A ao = ai}
where P’ is the translated Jasmin program, i is an arbitrary
input, id is a stack frame ID, F is the function name in the
Jasmin program and c is the intermediate code.

Once we have proven such an equivalence, we can reuse it
in proofs where F appears as a called function. It is therefore
important that the equivalences are parametric in id. We
also want to preserve the precondition ¢ and again we have
to assume that ¢ is stable w.r.t. the locations of F and c.
However, there is one issue here: the locations set of F is not
straightforward to compute and might also be rather large.
Instead we require that ¢ is stable w.r.t. all possible locations
used by ¢, i.e., locations stored using an id” with prefix id
(id < id"). This turns out to be a sufficient and reasonably
manageable invariant to preserve.

6.5 Connecting AES to the PRF Security Proof

The encryption function of which we want to prove the
security can be implemented in Jasmin as:

fn enc(reg ul28 n,reg ul28 k,reg ul28 p) -> reg ul28 {

reg ul28 mask, c;
mask = aes(n, k);

41

Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters
¢ = xor(mask, p);

return(c);

}

We translate it into SSProve as JENC and use it in the
following security game, supplying the random nonce r:

Definition JPRF_real id0 m :=
k_val « kgen ;;
r « sample uniform N ;;
res «— JENC idO k_val r m ;;

ret (r, res)

We then prove it perfectly indistinguishability from a similar
scheme CPRF_real which uses an intermediate, simplified
SSProve encryption function, ENC, in place of JENC.

We establish the indistinguishability by applying Theo-
rem 1 of the SSProve paper [1]. We thus have to find a stable
invariant that is preserved by a run of each of these schemes
and prove that they return equal values. We prove a slight
generalization of the version that theorem. Before, the invari-
ant was required to be stable w.r.t. the finite sets of locations
used by the program. Moreover, these sets were assumed
to be disjoint from the state of the adversary. We now only
require the invariant to be stable w.r.t. some arbitrary sets
of locations assumed to be disjoint from the state of the
adversary. In particular, the sets can be infinite.

Thanks to this generalization we can apply the theorem
when one of the programs is the output of our translation,
since we do not have to provide the concrete set of locations
used by the program, but instead we can use an infinite
over-approximation. We thus obtain the following.

Theorem JPRF_perf_ind id : JPRF_real id =y CPRF_real.

We prove that CPRF_real is perfectly indistinguishable from
PRF_real aes using the original SSProve Theorem 1 as we
have better control over which locations are used.

Theorem CPRF_perf_ind: CPRF_real ~(PRF_real aes.

Combining these two theorems, we get the following: the
advantage of any adversary, which uses locations disjoint
from JENC and from the intermediate encryption schemes, in
distinguishing between JPRF_real and PRF_ENC is 0. This we
can then combine with the result from the SSProve paper [1,
Section 2.3] which states that PRF_ENC is IND-CPA secure up
to the advantage of an adversary against aes as a PRF.

7 Related Work

The use of formal verification for cryptography has been in-
tensely investigated, and Barbosa et al. [7] give an overview.
More narrowly, work related to SSProve can be found in the
extended version of the SSProve paper [25]. In this section,
we survey the closest related work to ours in this space.
CertiCrypt [11] is the earliest framework for reasoning
about cryptographic code in Coq, but is no longer maintained.
FCF [32] is a more recent foundational Coq framework for

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

cryptographic proofs. It was used together with VST to ver-
ify the C implementations of HMAC in OpenSSL [14] and
mbedTLS [41]. Our work is similar in that we prove the se-
curity and correctness of the Jasmin implementation of AES.
While FCF could have been a reasonable option for us, we
chose SSProve because it is under active development, uses
the well-developed mathcomp [30] and mathcomp-analysis
libraries [3], and supports modular proofs.

EasyCrypt [9, 10] is a proof assistant and verification tool
specifically designed for game-based cryptographic proofs.
Its good integration with automatic theorem provers (e.g.,
SMT solvers) is helpful for large proofs, even though it comes
at a cost in terms of trusted computing base. The program
logics of CertiCrypt and EasyCrypt come with native support
for reasoning about function calls. This was not available in
SSProve before and addressing this is one of the contributions
of the present work (see Section 5.1).

In the fundamental ‘Last Mile’ paper [5] Jasmin programs
are given semantics in Coq and the correctness of the Jasmin
compiler is proved in Coq with respect to this semantics. As a
realistic case study, they use EasyCrypt to prove the security
and correctness of a Jasmin implementation of SHA3, relying
on an unverified translation from Jasmin to EasyCrypt. In
the present work, we bridge this gap by providing a verified
translation from Jasmin to SSProve.

CryptHOL [12] is a foundational framework for game-
based proofs that uses the theory of relational parametricity
to achieve automation in Isabelle/HOL. However, unlike FCF
and EasyCrypt, CryptHOL has so far not been used for the
verification of efficient programs, as far as we are aware.

Schwabe et al. [37] prove the correctness of the C imple-
mentation of X25519 in TweetNaCl using VST. Protzenko et
al. [34] verify an impressive library of cryptographic code in
F*. Fiat-Crypto [21] is a foundational tool that can generate
verified efficient implementations of finite field arithmetic.
These works are focused on correctness though and do not
consider cryptographic security.

Currently, there is no formal specification for the complete
Rust language. The Hacspec semantics can be seen as a pre-
cise semantics for a non-controversial subset of Rust. Similar
proposals, but for much larger subsets of Rust, include those
of Ho and Protzenko [26] and Denis et al. [18].

8 Future Work

Jasminify [40] is a python tool that simplifies the process of
calling Jasmin code from Rust. After compiling a program,
the Rust object file is replaced with the Jasmin object file.
However, Jasminify does not come with any correctness
guarantees. We have shown how to prove the equivalence of
a Rust (Hacspec) implementation for AES with a Jasmin pro-
gram. Hacspec is expressive enough to implement high-level
cryptographic protocols. For such protocols, we now have a
safe way to replace its cryptographic primitives by optimized

42

CPP °24, January 15-16, 2024, London, UK

Jasmin ones, as we know that their source-level semantics
agree. As future work, one could try to test this toolchain, by
using Jasminify, proving equivalence between the Hacspec
and Jasmin implementations and then benchmarking to see
what kind of performance gains one can achieve.

In concurrent work, libcrux [27] provides a library of ver-
ified implementations from different frameworks; and com-
bines them with a safe Rust API For example, it starts with
a Hacspec reference implementation of HMAC and HKDH,
and replaces their hash functions with optimized Jasmin im-
plementations. It was proved [5] in EasyCrypt that the SHA3
implementation indeed implements a hash-function, but a
formal connection with Hacspec is still missing. It would be
exciting to use our framework to formally verify some of the
replacements done in libcrux.

The Jasmin language is still under active development. In
the present work, we devised a verified translation for the
published version of the language [4]. It would be interesting
to extend our work with language features that were added
to Jasmin concurrently to our work.

Acknowledgements

We are very grateful to Frangois Dupressoir for feedback on
an earlier version of this article.

This work was in part supported by the Concordium
Blockchain Research Center at Aarhus University, by a Vil-
lum Investigator grant (no. 25804), Center for Basic Research
in Program Verification (CPV), from the VILLUM Foundation,
by the German Federal Ministry of Education and Research
BMBF (grant 16KISK038, project 6GEM), and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) as part of the Excellence Strategy of the German Federal
and State Governments — EXC 2092 CASA - 390781972.

References

[1] Carmine Abate, Philipp G. Haselwarter, Exequiel Rivas, Antoine Van
Muylder, Théo Winterhalter, Catalin Hritcu, Kenji Maillard, and Bas
Spitters. 2021. SSProve: A Foundational Framework for Modular Cryp-
tographic Proofs in Coq. (2021). https://eprint.iacr.org/2021/397
AbsInt. [n.d.]. Factsheet: CompCert C Compiler. Available at https:
//www.absint.com/factsheets/factsheet_compcert_c_web.pdf. https:
//www.absint.com/factsheets/factsheet_compcert_c_web.pdf
Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien
Rouhling, Kazuhiko Sakaguchi, and Pierre-Yves Strub. 2021. mathcomp-
analysis. Analysis library compatible with Mathematical Components.
https://github.com/math-comp/analysis
José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,
Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,
Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-
Assurance and High-Speed Cryptography. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).
ACM, 1807-1823. https://doi.org/10.1145/3133956.3134078
[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Gré-
goire, Adrien Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves

https://eprint.iacr.org/2021/397
https://www.absint.com/factsheets/factsheet_compcert_c_web.pdf
https://www.absint.com/factsheets/factsheet_compcert_c_web.pdf
https://www.absint.com/factsheets/factsheet_compcert_c_web.pdf
https://www.absint.com/factsheets/factsheet_compcert_c_web.pdf
https://github.com/math-comp/analysis
https://doi.org/10.1145/3133956.3134078

CPP °24, January 15-16, 2024, London, UK

G

—

[7

—

8

[

[9

—

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

Strub. 2020. The Last Mile: High-Assurance and High-Speed Cryp-
tographic Implementations. In 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 965-982.

Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Gré-
goire, Vincent Laporte, and Swarn Priya. 2022. Enforcing Fine-Grained
Constant-Time Policies. In Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security (Los Angeles, CA,
USA) (CCS °22). Association for Computing Machinery, New York, NY,
USA, 83-96. https://doi.org/10.1145/3548606.3560689

Manuel Barbosa, Gilles Barthe, Karthikeyan Bhargavan, Bruno
Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno. 2019. SoK:
Computer-Aided Cryptography. IACR Cryptol. ePrint Arch. 2019 (2019),
1393. https://eprint.iacr.org/2019/1393

Manuel Barbossa, Frang¢ois Dupressoir, Benjamin Grégoire, Vincent
Laporte, Pierre-Yves Strub, and Tiago Oliveira. 2022. EasyCrypt and
Jasmin Tutorial. https://formosa-crypto.gitlab.io/news/2022-06-07/
sibenik Sibenik.

Gilles Barthe, Francois Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, and Pierre-Yves Strub. 2013. EasyCrypt: A Tutorial.
In Foundations of Security Analysis and Design VII - FOSAD 2012/2013
Tutorial Lectures (Lecture Notes in Computer Science, Vol. 8604). Springer,
146-166. https://doi.org/10.1007/978-3-319-10082-1_6

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago
Zanella Béguelin. 2011. Computer-Aided Security Proofs for the Work-
ing Cryptographer. In CRYPTO (Lecture Notes in Computer Science,
Vol. 6841). Springer, 71-90. https://doi.org/10.1007/978-3-642-22792-
95

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009.
Formal certification of code-based cryptographic proofs. In POPL. 90—
101.

David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar. 2020.
CryptHOL: Game-Based Proofs in Higher-Order Logic. § Cryptol.
33, 2 (2020), 494-566. https://doi.org/10.1007/s00145-019-09341-z
Mihir Bellare and Phillip Rogaway. 2004. Code-Based Game-Playing
Proofs and the Security of Triple Encryption. IACR Cryptol. ePrint
Arch. (2004), 331. http://eprint.iacr.org/2004/331

Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W.
Appel. 2015. Verified Correctness and Security of OpenSSL HMAC.
In 24th USENIX Security Symposium. USENIX Association, 207~
221. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/beringer

Karthikeyan Bhargavan, Franziskus Kiefer, and Pierre-Yves Strub. 2018.
hacspec: Towards Verifiable Crypto Standards. In Security Standard-
isation Research - 4th International Conference, SSR 2018, Darmstadt,
Germany, November 26-27, 2018, Proceedings (Lecture Notes in Computer
Science, Vol. 11322), Cas Cremers and Anja Lehmann (Eds.). Springer,
1-20. https://doi.org/10.1007/978-3-030-04762-7_1

Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,
Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath T. V. Setty, and
Laure Thompson. 2017. Vale: Verifying High-Performance Cryp-
tographic Assembly Code. In 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017.,
Engin Kirda and Thomas Ristenpart (Eds.). USENIX Association, 917—
934. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/bond

Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Ko-
hbrok, and Markulf Kohlweiss. 2018. State Separation for Code-Based
Game-Playing Proofs. In ASTACRYPT. Springer International Publish-
ing, Cham, 222-249. https://eprint.iacr.org/2018/306

Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022.
Creusot: A Foundry for the Deductive Verification of Rust Programs.
In Formal Methods and Software Engineering, Adrian Riesco and Min
Zhang (Eds.). Springer, 90-105.

43

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters

Jason A. Donenfeld. [n. d.]. WireGuard: Formal Verification. Available
at https://www.wireguard.com/formal-verification/. https://www.
wireguard.com/formal-verification/

Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James Dray. 2001. Advanced Encryption
Standard (AES). https://doi.org/10.6028/NIST.FIPS.197

A.Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. 2019. Simple
High-Level Code for Cryptographic Arithmetic - With Proofs, Without
Compromises. In IEEE S&P. https://doi.org/10.1109/SP.2019.00005
Armando Faz-Hernandez, Sam Scott, Nick Sullivan, Riad S. Wahby,
and Christopher A. Wood. 2022. Hashing to Elliptic Curves. Internet-
Draft draft-irtf-cfrg-hash-to-curve-16. Internet Engineering Task
Force. https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
16/ Work in Progress.

Shay Gueron. 2012. White Paper: Intel® Advanced En-
cryption Standard (AES) New Instructions Set. https:
//www.intel.com/content/www/us/en/developer/articles/tool/intel-
advanced-encryption-standard-aes-instructions-set.html

Shai Halevi. 2005. A plausible approach to computer-aided cryp-
tographic proofs. IACR Cryptol. ePrint Arch. (2005), 181. http:
//eprint.iacr.org/2005/181

Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo
Winterhalter, Carmine Abate, Nikolaj Sidorenco, Catalin Hritcu, Kenji
Maillard, and Bas Spitters. 2023. SSProve: A Foundational Framework
for Modular Cryptographic Proofs in Coq. ACM Trans. Program. Lang.
Syst. 45, 3, Article 15 (jul 2023), 61 pages. https://doi.org/10.1145/
3594735

Son Ho and Jonathan Protzenko. 2022. Aeneas: Rust Verification by
Functional Translation. Proc. ACM Program. Lang. 6, ICFP, Article 116
(2022), 31 pages. https://doi.org/10.1145/3547647

Franziskus Kiefer, Karthikeyan Bhargavan, Lucas Franceschino, De-
nis Merigoux, Lasse Letager Hansen, Bas Spitters, Manuel Barbosa,
Antoine Séré, and Pierre-Yves Strub. 2023. HACSPEC: a gateway to
high-assurance cryptography. In RWC23.

Xavier Leroy, Sandrine Blazy, Daniel Kastner, Bernhard Schommer,
Markus Pister, and Christian Ferdinand. 2016. CompCert — a for-
mally verified optimizing compiler. In ERTS 2016: Embedded Real Time
Software and Systems, 8th European Congress.

Andreas Lochbihler, S. Reza Sefidgar, David A. Basin, and Ueli Maurer.
2019. Formalizing Constructive Cryptography using CryptHOL. In
CSF. IEEE, 152-166. https://doi.org/10.1109/CSF.2019.00018

Assia Mahboubi and Enrico Tassi. 2021. Mathematical components.
Online book. https://math-comp.github.io/mcb/

Denis Merigoux, Franziskus Kiefer, and Karthikeyan Bhargavan. 2021.
hacspec: succinct, executable, verifiable specifications for high-assurance
cryptography embedded in Rust. Technical Report. Inria. https://hal.
inria.fr/hal-03176482

Adam Petcher and Greg Morrisett. 2015. The Foundational Cryp-
tography Framework. In Principles of Security and Trust - 4th Inter-
national Conference, POST 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015, Proceedings (Lecture Notes in Computer Science,
Vol. 9036), Riccardo Focardi and Andrew C. Myers (Eds.). Springer,
53-72. https://doi.org/10.1007/978-3-662-46666-7_4

Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation
Validation. In Tools and Algorithms for Construction and Analysis of
Systems, 4th International Conference, TACAS 98, Held as Part of the
European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings (Lecture
Notes in Computer Science, Vol. 1384), Bernhard Steffen (Ed.). Springer,
151-166. https://doi.org/10.1007/BFb0054170

Jonathan Protzenko and Bryan Parno. 2019. EverCrypt crypto-
graphic provider offers developers greater security assurances.
Microsoft Research Blog. https://www.microsoft.com/en-

https://doi.org/10.1145/3548606.3560689
https://eprint.iacr.org/2019/1393
https://formosa-crypto.gitlab.io/news/2022-06-07/sibenik
https://formosa-crypto.gitlab.io/news/2022-06-07/sibenik
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/s00145-019-09341-z
http://eprint.iacr.org/2004/331
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://doi.org/10.1007/978-3-030-04762-7_1
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://eprint.iacr.org/2018/306
https://www.wireguard.com/formal-verification/
https://www.wireguard.com/formal-verification/
https://www.wireguard.com/formal-verification/
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1109/SP.2019.00005
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/16/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/16/
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
http://eprint.iacr.org/2005/181
http://eprint.iacr.org/2005/181
https://doi.org/10.1145/3594735
https://doi.org/10.1145/3594735
https://doi.org/10.1145/3547647
https://doi.org/10.1109/CSF.2019.00018
https://math-comp.github.io/mcb/
https://hal.inria.fr/hal-03176482
https://hal.inria.fr/hal-03176482
https://doi.org/10.1007/978-3-662-46666-7_4
https://doi.org/10.1007/BFb0054170
https://www.microsoft.com/en-us/research/blog/evercrypt-cryptographic-provider-offers-developers-greater-security-assurances/
https://www.microsoft.com/en-us/research/blog/evercrypt-cryptographic-provider-offers-developers-greater-security-assurances/

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

(35]

(36]

(37]

(38]

(39]

us/research/blog/evercrypt-cryptographic-provider-offers-
developers-greater-security-assurances/
Mikkel Milo Rasmus Holdsbjerg-Larsen, Bas Spitters. 2022. A Verified

Pipeline from a Specification Language to Optimized, Safe Rust. CogPL.

https://cs.au.dk/~spitters/CoqPL22.pdf

Mike Rosulek. 2021. The Joy of Cryptography. Online textbook.

http://web.engr.oregonstate.edu/~rosulekm/crypto/

Peter Schwabe, Benoit Viguier, Timmy Weerwag, and Freek Wiedijk.

2021. A Coq proof of the correctness of X25519 in TweetNaCl. In 2021
34th CSF. 1-16. https://doi.org/10.1109/CSF51468.2021.00023
Victor Shoup. 2004. Sequences of games: a tool for taming complexity

in security proofs. IACR Cryptol. ePrint Arch. (2004), 332. http://eprint.

iacr.org/2004/332
Laurent Simon, David Chisnall, and Ross Anderson. 2018. What you

get is what you C: Controlling side effects in mainstream C compilers.

44

[40]

[41]

[42]

CPP °24, January 15-16, 2024, London, UK

In 2018 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 1-15.

Juriaan van Drunen. 2021. Calling Jasmin from Rust. https://gitlab.
com/Jur/jasminify

Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer,
Adam Petcher, and Andrew W. Appel. 2017. Verified Correctness
and Security of mbedTLS HMAC-DRBG. In CCS’17. ACM, 2007-2020.
https://doi.org/10.1145/3133956.3133974

Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. 2017. HACL*: A Verified Mod-
ern Cryptographic Library. In ACM Conference on Computer and Com-
munications Security. ACM, 1789-1806. http://eprint.iacr.org/2017/536

Received 2023-09-19; accepted 2023-11-25

https://www.microsoft.com/en-us/research/blog/evercrypt-cryptographic-provider-offers-developers-greater-security-assurances/
https://www.microsoft.com/en-us/research/blog/evercrypt-cryptographic-provider-offers-developers-greater-security-assurances/
https://cs.au.dk/~spitters/CoqPL22.pdf
http://web.engr.oregonstate.edu/~rosulekm/crypto/
https://doi.org/10.1109/CSF51468.2021.00023
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
https://gitlab.com/Jur/jasminify
https://gitlab.com/Jur/jasminify
https://doi.org/10.1145/3133956.3133974
http://eprint.iacr.org/2017/536

4.4. SUMMARY 77

4.4 Summary

In this paper, we presented how to verify efficient implementation written in Jasmin
against specifications written in the Hacspec subset. This is achieved by translating
both to SSProve and verifying their (functional) equivalence. Using the SSProve
library in Rocq, we can prove security properties about the specification, which then
hold for the implementation by transitivity.

4.5 The SSProve Backend of Hax

SSProve is built over the choice type from mathematical components (MathComp) [66,
Section 8.3]. These are types with a choice operator. As these are not the native types
of Rocq, we cannot, e.g., use the inductive type construction mechanism of Rocq, as
the types generated are not directly choice types, though possibly equivalent to one.

We translate enums as indexed types [[,en,, (args, — T); projections give us
the constructors. We can do dependent matching for pattern matching on the enum
type. Records are defined as telescoped tuples. We define the function with implicit
arguments, thus allowing the arguments to be given in any order. We define notation
for updating the records; this could be replaced by existing solutions from cog-record-
update [22]. Primitives are mapped to their choice type counterpart (unit, bool,
(machine) words). Functions and items are defined top-level as Rocq definitions.

Instead of doing this remapping, we could use some meta programming (e.g.,
ELPI [87], MetaRocq [1]) or directly encode the equivalence in the translation to
automatically build or derive the type constructs as choice types. This is exactly what
Trocq [28, 29] is being developed to do.

Since SSProve has an imperative language, we can actually translate mutable
variables directly. This currently requires that we state which variables each function
might affect. This is done by collecting all variables that are directly used and
then walking the dependency graph (a DAG), taking the union of all variables from
dependent functions. However, most of the time reasoning about locations and
mutability is not necessary, and doing the functionalization is okay.

4.6 The Dual Translation of SSProve

The SSProve backend of Hax is doing two translations simultaneously. This dual
translation can be explained in a couple different styles. It can be seen as translation
validation (as explained in the paper), where the equivalence proof between the two
shows the correctness of the imperative translation. The translation can alternatively
be interpreted as a realization of the imperative translation. We will explain these
interpretations of the translations in the following subsections.

78 CHAPTER 4. THE LAST YARD

Translation Validation

To look at the dual translation as translation validation [79], we let the imperative
translation into SSProve represent the generated target code, and let the functional
translation represent the source code. Then the equivalence can be seen as a refinement
relation validating the correctness of the translation. The generation of the equivalence
proof verifies that the imperative code has the same semantics as the functional
translation.

Realizability

Since the dual translation is defined per language construct, we can see the equivalence
as a realizability interpretation [10, 12, 61, 77]. The equivalence proof is then simply
a statement realizing the relation between the real and imperative translation. If we
formalize the semantics or convert the two translations into deep embeddings, then
we can formalize this realizability.

Monadic Verification Condition Generator (mvcgen)

An alternative way of handling the dual translation is using a monadic verification
condition generator (mvcgen) [43, 44, 83], which is done for the LVIN backend of
Hax. Here imperative code is constructed using do notation, and then all goals are
generated and automatically discharged. As this method is more general, it could
make sense to encode it into Hax and allow translation into the imperative monad
directly. This could also be an alternative phase in the Hax engine, as the generation of
goals and reduction to functional code could happen as part of the translation instead
of having to do it after translation. However, this would break the formalization, as
the reduction would happen in Hax, where it is not formalized.

Chapter 5

Formal Security and Functional
Verification of Cryptographic
Protocol Implementations in Rust

We will start by giving a general introduction to TLS 1.3; a more detailed description
can be found in the paper. Then we introduce the paper, followed by a technical deep
dive into the key schedule security proofs with some hints about how to apply the
formalization to related projects, i.e., MLS.

5.1 Transfer Layer Security (TLS 1.3)

The goal of the transfer layer security (TLS 1.3) [80] protocol is to securely exchange
a set of cryptographic keys, which is used to encrypt further communication. TLS 1.3
forms the basis for most networking and is a large part of hypertext transfer protocol
secure (HTTPS), which is used by most websites. There have been many attacks on
older versions of TLS, and post-quantum attacks are becoming more realistic; thus,
the construction of TLS 1.3 is focusing on using post-quantum secure primitives and
verifying the security. These factors make TLS 1.3 a very interesting formalization
target, as bugs and possible attacks have a very big impact.

The effort to formalize TLS is also part of Project Everest [14, 88], which tries to
make a formalized version of the full HTTPS stack.

5.2 The Paper

A summary of the paper is made in §5.3 for convenience. This is the cryptology
ePrint archive version [17] of the paper, as the paper is accepted at Computer and
Communications Security (CCS’25), but not yet published.

81

Formal Security and Functional Verification of
Cryptographic Protocol Implementations in Rust

Karthikeyan Bhargavan!, Lasse Letager Hansen?, Franziskus Kiefer!,
Jonas Schneider-Bensch!, and Bas Spitters?

ICryspen, Paris, France
2Aarhus University, Aarhus, Denmark

Abstract

We present an effective methodology for the formal verifi-
cation of practical cryptographic protocol implementations
written in Rust. Within a single proof framework, we show
how to develop machine-checked proofs of diverse properties
like runtime safety, parsing correctness, and cryptographic
protocol security. All analysis tasks are driven by the soft-
ware developer who writes annotations in the Rust source
code and chooses a backend prover for each task, ranging
from a generic proof assistant like Fx to dedicated crypto-
oriented provers like ProVerif and SSProve. Our main contri-
bution is a demonstration of this methodology on Bert13, a
portable, post-quantum implementation of TLS 1.3 written
in Rust and verified both for security and functional correct-
ness. To our knowledge, this is the first security verification
result for a protocol implementation written in Rust, and
the first verified post-quantum TLS 1.3 library.

1 High-Assurance Cryptographic Protocols

The last decade has been a fertile time for the design and de-
ployment of advanced cryptographic schemes and protocols,
motivated by a variety of reasons ranging from the Snowden
revelations to the popularity of cryptocurrencies. This trend
promises to continue with new standards for post-quantum
cryptography and new efforts around privacy-preserving ma-
chine learning, which will undoubtedly require novel proto-
col designs and fresh implementations.

Cryptographic protocol libraries, like OpenSS libsig-
na and Bitcoin Cor have come to occupy an increas-
ingly large part of the trusted computing base of modern
computer systems, and are consequently held to a high stan-
dard. Any bug in these codebases is treated as a poten-
tially costly vulnerability. Hence, the current period of rapid
change raises concerns about the quality and security of all
the new protocol code that is being developed and deployed.

In this work, we demonstrate a methodology for building

Thttps://openssl-library.org/
*https://signal.org/docs/
3https://bitcoin.org/en/bitcoin-core/

Application
Crypto Protocol Implementation
‘ Protocol API ‘
Crypto Protocol Message State
Constructions Logic Formatting Machines
System Libraries
Crypto Credential Network
Library Management Library
Public Network

Figure 1: Crypto Protocol Implementation Components

high-assurance implementations of cryptographic protocols,
where different core components can be formally verified for
the desired security and correctness guarantees, using some
of the most practical, state-of-the-art verification techniques
available today.

Key Components of Protocol Implementations. Fig-
uredepicts the high-level structure of a crypto protocol
implementation.

The protocol relies on several system libraries: a crypto-
graphic library that implements standard crypto algorithms;
a credential management library that handles the retrieval,
validation, and storage of long-term keys and credentials,
such as X.509 certificates, private keys, and pre-shared keys;
and a networking library that sends and receives messages
over the untrusted network.

The protocol implementation itself consists of: protocol-
specific cryptographic constructions that may compose mul-
tiple cryptographic algorithms; the core protocol logic that
handles protocol message construction and processing; one
or more state machines to keep track of protocol progress;
and message formatting code to serialize and deserialize
both public messages and internal cryptographic inputs.
The protocol implementation combines these components
to provide an API that can be used by the Application.

https://openssl-library.org/
https://signal.org/docs/
https://bitcoin.org/en/bitcoin-core/

Bugs and Attacks. FEach of these protocol components is
security-critical and has a long history of attacks and vul-
nerabilities.

For example, consider implementations of the Transport
Layer Security (TLS) protocol [54]. Prior works have found
attacks on the specialized cryptographic constructions im-
plemented in TLS [3}|7], allowing attackers to decrypt appli-
cation messages. Other works have found flaws in the design
and implementation of the protocol logic |1512|, which weak-
ened the expected authentication or confidentiality prop-
erties. Devastating state machine bugs found in TLS im-
plementations allowed for all the protocol guarantees to be
bypassed [12]. Ambiguities in the TLS message formats re-
sulted in attacks on the authentication guarantees of the
protocol [48|[19]. Of course, bugs are also frequently found
in the libraries TLS depends on, e.g. in X.509 validation |36],
and in the crypto library [35].

This wide variety of bugs and attacks is not restricted to
standard protocols like TLS. Recent papers have found such
attacks also on modern implementations of secure messen-
gers |50/, encrypted cloud storage 8], and multi-party com-
putation [47]. Consequently, a methodology for developing
high-assurance cryptographic protocol designs and imple-
mentations is an urgent necessity.

Formally Verification of Protocol Components. A
growing field of research, sometimes called Computer-Aided
Cryptography 9], is concerned with the formal analysis of
and machine-checked proofs for the design and implementa-
tion of cryptographic mechanisms and protocols. Many of
the tools and techniques developed in this field can be used
to verify protocol components.

Domain-specific software verification tools have been de-
veloped to analyze the correctness and security of message
formatting code [53|61], the security of cryptographic con-
structions [10/[32], the formal analysis of protocol logic and
state machines [161[11][42], and the formal verification of en-
tire protocol implementations up to high-level APIs [171/40].
A separate line of work has focused on developing for-
mally verified cryptographic libraries in C and assembly (see
e.g. [62/[30![52][5]). Recent work has also addressed veri-
fied implementations of X.509 public key certificate valida-
tion [25].

A common feature of most of these tools is that they ad-
dress implementations written either in domain-specific lan-
guages (DSLs) or in highly-stylized subsets of mainstream
languages. Consequently, these results are mainly applied to
verification-oriented research code and do not consider id-
iomatic implementations written by protocol developers in
C or Rust. Furthermore, the literature shows that different
tools are better at different verification tasks. In particular,
targeted security-oriented tools are better at analyzing cryp-
tographic components (shown in green in Figure while
standard software verification tools are effective on the rest.
Combining these tools to verify a full protocol implementa-
tion remains a challenge.

hax: Verifying Rust Code with Multiple Provers. In
this paper, we target protocol implementations written in
idiomatic Rust, and we aim to drive proofs for all the pro-
tocol components from a single framework, while still using
the best tool for each task. To this end, we use and build
upon hax [14), a generic formal verification framework for
Rust programs that translates the source code into the in-
put languages of multiple backend provers, including Fx,
Rocq, ProVerif, and SSProve.

The programmer controls which tools are used to verify
each module, and provides annotations in the Rust code
that serve as proof goals and hints. Hence, the same code
can be verified for different properties using different tools.
hax supports safe Rust, which already guarantees memory-
safety and type safety. This is a great improvement over C
code. However, Rust code can still raise runtime exceptions
(‘panic’), e.g. when by an integer overflow or index out of
bounds access of a vector. For Bert13, we use the Fx back-
end to prove runtime safety (the program does not crash/-
panic) and to prove the correctness of message formatting;
we use ProVerif to analyze the symbolic security of the core
protocol logic and state machine code; we use SSProve to
prove the computational security of protocol-specific cryp-
tographic constructions.

Case Study: Formally Verifying Bert13. We demon-
strate this methodology on Berti13, an implementation of
TLS 1.3 that is written in Rust and supports both classical
and post-quantum ciphersuites

Bert13 uses formally verified cryptography from the
libcrux library [41] and is practical on low-end devices with
sub-10ms handshake completion, depending on the choice
of ciphersuite. The core protocol code in Bert13 is for-
mally verified for the expected authenticity and confidential-
ity guarantees of TLS using ProVerif. The ProVerif model
assumes the security of the key schedule, which we sepa-
rately prove using SSProve. The model also assumes the
correctness of the parsing code, which we verify using Fx.
Finally, we prove that the implementation does not panic at
runtime, by verifying it for runtime safety using Fx. In ad-
dition, we use the strong typing of the Rust type system to
enforce coding disciplines such as secret independence and
state machine linearity.

Contributions. In combination, these results are the
first of their kind for cryptographic protocol implementa-
tions written in Rust, and Bert13 is the first high-assurance
implementation for a post-quantum variant of TLS. Ours
is also the first machine-checked proof of the TLS 1.3 key
schedule. We believe that the wide range of techniques we
demonstrate in this paper will be independently useful as a
guide to the formal analysis of other protocol libraries.

Outline. Section outlines our multi-prover methodol-
ogy for verifying Rust code. Sectiondescribes the TLS
1.3 protocol and sets out verification goals for its implemen-

4We use an anonymous name for Bert13, which is developed as an
open-source project, and will be de-anonymized before publication.

libcrux

Extract

\
Authenticit l
uinenticity, Efficient and correct | |
confidentiality, implementation | 1
and PQ security P \

)

|

! Formally "
L verifod Runtime safety
|
|

. Secure key schedule
Parsing correctness

properties

Figure 2: Verifying Protocol Implementations with hax

tations. Sectiondescribes the Bert13 implementation of
post-quantum TLS 1.3. Sectionproves security of the key
schedule in the computational model with SSProve. Sec-
tion @ proves the main confidentiality and authentication
guarantees for the Bert13 code using the symbolic prover
ProVerif. Section uses Fx to prove runtime safety and
message formatting properties for Bert13. Sectioncon—
cludes with some discussion.

2 Methodology: Verifying Rust Code with hax

Our methodology is based on hax [14], a framework for Rust
verification that supports multiple proof backends. The way
we use hax in this paper is depicted in Figure We begin
with a Rust implementation of some cryptographic protocol
(here Bert13). The implementation is written in idiomatic
Rust but is annotated by the Rust developer with verifica-
tion goals and proof hints. The hax toolchain takes the Rust
code along with the annotations and translates it into the in-
put language of different provers, where they can be verified
for security or functional properties. Notably, the developer
can choose which source modules are analyzed with which
tools and for which properties. The cryptography under-
lying the protocol implementation is provided by libcrux, a
formally verified cryptographic library.

The hax toolchain has been used before for security proofs
of cryptographic constructions [37] and for the correctness
proofs in libcrux itself, but this is the first work to apply
hax to protocol implementations. The main advantage of
hax for our work is that it allows us to use multiple provers
while allowing the Rust developer to drive the verification.
There are many other Rust verification tools under active
development [391/6/|271/46]|591(45/34/[311/64]. We chose hax
for this project primarily for its support of both security and
functional verification tools. On the other hand, hax itself
does not support all of Rust, and so the developer has to
stay within the supported subset to use the toolchain.

For each input Rust crate, hax parses it using the rustc
compiler, performs a series of transformations to facilitate
translation to the functional languages in proof assistants
like Fx and Rocq, and then generates models for various

backends.

Fx Backend. The first backend we consider is the Fx |57
proof assistant, which has been used in a number of verifica-
tion projects including the HACLx cryptographic library |62]
and libcrux; see also Section Verification in Fx proceeds
with the aid of assertions, refinement types and invariants.
This could be used to show that e.g. that the reverse func-
tion on lists preserves its length, or that QuickSort is indeed
a correct sorting function. Such properties are proven with
the help of the Z3 SMT-solver.

The Rust developer can write contracts in the form of pre-
and post-conditions, assertions, and loop invariants, that
are translated by hax into the appropriate verification con-
ditions in Fx. In particular, we typically use pre-conditions
to provide constraints for runtime safety, and we use post-
conditions to specify correctness properties. Once all func-
tions are annotated with contracts, they can be verified by
Fx, for the most part automatically, using its SMT solvers,
although some proofs may require some additional hints.
(See Sectionfor how this works in Bert13).

This is in line with the very recent (experimental) addition
of Contracts to the Rust language It envisions a unified
language for static and dynamic checks, with the ultimate
goal that:

All unsafe functions in Rust should have their
safety conditions specified using contracts, and ver-
ified that those conditions are enough to guarantee
absence of undefined behavior. We provide an ex-

ample in Section

Rust users should be able to check that their code
do not violate the safety contracts of unsafe func-
tions, which would rule out the possibility that
their applications could have a safety bug.

In this work we show that hax already facilitates this for a re-
alistic project such as Bert13. We recommend that the hax
team aligns their contracts with the experimental contracts
supported by the rust language, once their design stabilizes.

Rocq and SSProve backends. Rocq (58|, like Fx, is a
general proof assistant build on dependent type theory. It is
a foundational proof assistant in the LCF tradition. It does
not use SMT-solvers, so we expect more user interaction
would be required to prove runtime safety.

Our main use of Rocq is via the SSProve |38| library in
Rocq which includes syntax, semantics and programming
logic of a probabilistic imperative programming language,
as commonly used by cryptographers in the computational
model. It also provides a program logic in the spirit of Easy-
Crypt [10]. On top of this, it builds an interpretation of the
State-Separating Proof |23] modular style of reasoning, also
used in the Joy of Cryptography book |[55]. The main ingre-
dient of SSP is a calculus for program fragments (packages)
in the aforementioned programming language.

Shttps://rust-lang.github.io/rust-project-goals/2025h1/
std-contracts.html

https://rust-lang.github.io/rust-project-goals/2025h1/std-contracts.html
https://rust-lang.github.io/rust-project-goals/2025h1/std-contracts.html

hax supports special annotations for cryptographic prop-
erties used in SSProve. These properties can then be proven
in dialogue with a proof engineer. We will see in Section
that the SSP structure can help to improve the structure of
the rust code.

By limiting the number of transformations in the hax
toolchain, one can translate the hax subset of Rust to the
simple imperative language used by SSProve in Rocq. hax
even provides a proof that the functional and imperative
translation agree. This can be seen as a partial correctness
proof of the hax transformations.

ProVerif backend. In addition to proof assistants, hax also
supports security verification of Rust code using dedicated
protocol verifiers. Currently, it supports the ProVerif |21]
tool, but others can be added similarly.

ProVerif is an automated tool for checking security proto-
cols in the symbolic model (or ‘Dolev-Yao’), which is codi-
fied using the applied m-calculus. Given security properties,
such as confidentiality, integrity and authenticity, ProVerif
will try to automatically verify these properties for a pro-
tocol model written in terms of message-passing processes.
The symbolic model is less precise than the computational
model (used in SSProve). It treats cryptographic primitives,
such as encryption, as perfect black boxes. However, this has
the advantage of much better automation. The two mod-
els aid each other, in the sense that one can prove in the
computational model that the primitives have the assumed
security properties.

Symbolic analyses, using tools like ProVerif, Tamarin, and
DY*, have proved effective for the comprehensive formal
analysis of real-world protocols like TLS, Messaging Layer
Security, Noise, and Signal 421/24//60}/40]. We use ProVerif
(in Section@ to formally analyze our Rust implementation
of TLS 1.3.

3 The TLS 1.3 Protocol

The Transport Layer Security (TLS) protocol is the IETF
standard that that underlies all secure Web connections. In
2018, partly in response to some weaknesses in the previ-

ous protocol version, it was completely redesigned as TLS
1.3 [54].

3.1 Protocol Flow

Figureshows the main protocol flow commonly used on
the Web. The protocol is initiated by a client when it wishes
to establish a connection with a server. The protocol starts
with a key exchange, called the handshake, which authenti-
cates the server (and potentially the client) and establishes
a sequence of keys shared between them, via a novel cryp-
tographic construction called the key schedule. Once the
handshake is complete, the client and server can use the es-
tablished keys to exchange encrypted application data with
each other, using the record sub-protocol.

Client Server

ServerHello(param,encapSC,...)

ClientHello(ekC,...)

EncryptedExtensions(...)

Certificate(certS)
txC | CertificateVerify(sigS) _IE
eV Finished(macS) gz
E_ Finished (macC) _IE
ApplicationData(cO)
ApplicationData(cl)

ApplicationDatay(...)

The main cryptographic computations in the protocol are:

(k,encapSC) = KEM-Encap(ekC)
sigS = Sign(skS, txC)
macS = MAC (mkS, txV)
macC = MAC (mkC, txF)
cO = AEAD (akC, mO0)
cl= AEAD (akS, ml)

and the symmetric keys mkC, mkS, akC, akS are derived
from the encapsulated key k via the key-schedule, as
described in Section[5]

Figure 3: The TLS 1.3 protocol: main elements of the server-
authenticated handshake and application data exchange

In Figure the server is authenticated with an X.509
certificate, but the client remains unauthenticated. There is
an alternate flow, not shown here, where the client also pro-
vides an X.509 certificate, and yet another without certifi-
cates, where both client and server authenticate each other
via a pre-shared key. We purposely choose a KEM-based
presentation of the protocol to make it possible to uniformly
account for both Diffie-Hellman and Post-Quantum KEM-
based key exchange modes.

The client first sends a ClientHello message contain-
ing an ephemeral KEM public key ekC. In response, the
server sends a ServerHello containing a fresh key k encap-
sulated under ekC. After the ServerHello, both the client
and server initialize the key schedule with the key k, and
then use it to derive a sequence of keys as the protocol pro-
ceeds. For example, the key schedule produces handshake
encryption keys, which are used to protect all subsequent
handshake messages (a detail elided in the figure.)

The two hello messages also implement the negotiation
phase of the protocol: the client offers a choice of versions,

ciphersuites, and other extensions, and the server chooses
one set of parameters in its response and in the subsequent
EncryptedExtensions message.

The server then sends its X.509 certificate in a
Certificate message and proves that it knows the
corresponding private key by providing a signature
over the current protocol transcript in a subsequent
CertificateVerify message. The server then ends its side
of the handshake by sending a Finished message contain-
ing a MAC over the current transcript using a MAC key mkS
derived from the key schedule.

The client processes this stream of handshake messages
from the server, decapsulates the key k and derives the same
sequence of keys from the key schedule to decrypt the hand-
shake messages. It then validates the server’s X.509 certifi-
cate using its local certificate validation library, and veri-
fies the server’s signature and MAC. It then sends its own
Finished message to complete the handshake.

At this point, the client and server can start exchanging
application data messages that are encrypted using AEAD
keys for the two directions derived from the key schedule.

3.2 Formal Analyses of TLS 1.3

Given its importance to the Web ecosystem, TLS has been
comprehensively analyzed against a variety of threats in a
number of security models. For TLS 1.3, there are many
pen-and-paper proofs of security (see e.g. [29/|22]), mostly
focused on the core protocol logic and crypto constructions.
There are also several machine-checked proofs of the pro-
tocol: proofs using symbolic provers like ProVerif [42] and
Tamarin [24] that treat the cryptographic primitives ab-
stractly using equational theories, and proofs using com-
putational provers like CryptoVerif [42] and Computational
Fx [26] that precisely model cryptographic algorithms as
probabilistic functions over bit-strings.

All the proofs above are for abstract models of the proto-
col; they do not consider the precise cryptographic formats
specified in the standard, or account for multiple cipher-
suites running in parallel. Consequently, it is possible that
they miss some attacks. Conversely, modeling and analyz-
ing a large protocol like TLS 1.3 is not an easy task, and the
risk that the model itself will have mistakes is non-trivial.

Consequently, we advocate that protocol security analysis
must be performed, where possible, directly on the protocol
implementation. In this way, one can be sure of not missing
some low-level formatting detail, or some protocol feature
that is needed for the normal functioning of the protocol.
In the past, some works have analyzed reference implemen-
tations of TLS 1.3, such as a proof-of-concept JavaScript
implementation [42] of the full protocol, and a verification-
oriented Fx implementation [26] of the record layer. Neither
of these are practical implementations; they were written
primarily by researchers to exercise verification tools.

3.3 Goals for our TLS 1.3 Implementation

In this paper, our goal is to verify a practical Rust imple-
mentation of TLS 1.3. Our implementation must run effi-
ciently on a variety of platforms, ranging from IoT devices,
phones, desktops, to servers. It must interoperate with other
TLS implementations including popular web browsers and
web servers. Furthermore, it should support both classi-
cal Elliptic-Curve Diffie-Hellman key exchanges and post-
quantum key exchanges (based on post-quantum KEMs).

Importantly, we would like to formally verify that the pro-
tocol implementation achieves the confidentiality and au-
thentication guarantees expected of TLS. To achieve this
proof, we need to make some assumptions about the under-
lying cryptography. TLS 1.3 mainly uses well-understood
cryptographic constructions (signatures, MACs, AEAD en-
cryptions) for which we can make standard assumptions.
The only novel construction in the protocol is its key sched-
ule, which needs new analysis. Furthermore, most of the
cryptographic operations in the protocol rely on using the
protocol transcript to encode all the session content, and
so we must prove that the transcript is unambiguous: if a
client and server have the same transcript, their view of the
session (parameters, certificates, public keys, etc.) should
be the same.

We summarize these classic protocol security require-
ments for TLS 1.3 implementations as follows:

e Protocol Security Guarantees: the protocol imple-
mentation must ensure that the server (and optionally
client) is authenticated and that the application data
sent between honest clients and servers is confidential.
This, in turn, relies on two sub-goals.

— Key Schedule Security: the cryptographic con-
struction implemented in the key schedule imple-
mentation must be provably secure.

— Unambiguous Transcripts: the transcripts
maintained in the protocol implementation must
be injective with respect to session data.

Beyond these core cryptographic security guarantees, a
cryptographic protocol implementation must satisfy certain
other functional properties that are also important for the
security of the user. The implementation must be memory
safe, i.e. it must not read or write data out of bounds, which
might leak secrets (e.g. see HeartBleed®). It must not crash
with an unexpected error, even if an adversary were to send a
maliciously crafted message, otherwise it may enable denial-
of-service attacks. It must implement the protocol state ma-
chine correctly and not accept or reject messages out of turn,
or else it might open up state machine attacks [12]. And it
must safely handle the ephemeral session secrets generated
during the run of the protocol and not accidentally reveal
them to the adversary.

We summarize these additional requirements for TLS 1.3
implementations as follows:

Shttps://heartbleed.com

https://heartbleed.com

e Implementation Security Guarantees: the imple-
mentation must not break the security invariants ex-
pected by the protocol application. In particular:

— Runtime Safety: the protocol implementation
must be memory safe and must not crash with an
unexpected error.

— Session Secret Management: the short-term
secrets generated during a session must not be re-
vealed to the attacker via some public channel.

— State Machine Correctness: the implementa-
tion must correctly implement the protocol state
machine

Of course, this list of properties is not complete. One
may, for example, also wish to prove full functional con-
formance for the protocol implementation against a formal
specification of the protocol. Here, we restrict our ambitions
to proving properties we deem to be essential for security,
based on known attacks on TLS implementations, and leave
other properties for future work.

3.4 Implementation and Proofs

In Section we present Bert13, our portable post-quantum
TLS 1.3 implementation in Rust. Via interoperability test-
ing, we experimentally verify that this implementation con-
forms to the TLS standard. In the implementation, we use
the strong type system of Rust to enforce disciplines such
as secret independence (for session secret management) and
for state machine correctness.

In Section we prove cryptographic Security for the key
schedule implementation in Bert13 using the SSProve tool.
In Section@ we prove the main confidentiality and authen-
tication guarantees for the protocol code in Bert13 using
the symbolic prover ProVerif. In Section we first use the
Fx framework to prove the runtime safety for the entire pro-
tocol implementation. We then use Fx to also prove the
transcript unambiguity for our implementation.

4 Bert13: Post-Quantum TLS 1.3 in Rust

Bert13 is an implementation of the TLS 1.3 protocol in-
tended for real-world usage. It is not intended to be a
research artifact. As such, we have different requirements
and approach development and verification as equally im-
portant goals. Hence, instead of writing the protocol in
a proof-oriented language, which requires verification ex-
perts, Bert13 is written in Rust, by Rust engineers. This
illustrates our methodology of enabling domain experts and
software engineers to work together towards a verified im-
plementation.

4.1 Code Structure

The Bert13 source code is separated into the core TLS 1.3
protocol and the necessary networking APIs. The reposi-

tory also defines example client and server applications and
provides utilities for interoperability testing.

The main components of the protocol implementation
are as follows: the formats module implements the pars-
ing and generation of TLS 1.3 messages; the keyschedule
module and its submodules implement the key schedule; the
handshake module implements the TLS 1.3 state machine
and the main messaging functions for the handshake proto-
col; the record module implements the record layer encryp-
tion and decryption functions; and the api module provides
a protocol API to applications.

The implementation relies on a few external libraries. The
cryptography module provides a wrapper around the libcrux
library, which provides verified implementations of all the
necessary cryptographic primitives. One difference to classi-
cal TLS implementations is that the crypto module provides
a Key encapsulation mechanism (KEM) API instead of El-
liptic Curve Diffie Hellman (ECDH), to facilitate a uniform
interface which captures both classical and Post-Quantum
cipher suites.

Finally, the certificate module implements the minimal
functionality required for parsing certificates as part of the
TLS 1.3 handshake, and is considered an untrusted module
here. The client application is expected to take the certifi-
cate, server name, and public key provided by the protocol
API and validate them using an external PKI implementa-
tion. On the server, application needs to provide the pro-
tocol implementation with the appropriate certificate and
private key.

4.2 Rust Types for Secret Independence

The protocol implementation uses the strong typing disci-
pline of Rust to enforce several security and functional in-
variants.

Although Bert13 relies on libcrux for all its cryptography,
it must still carefully handle several secret values, such as the
certificate private key (on the server) and various symmet-
ric keys derived by the key schedule. To ensure that we do
not inadvertently leak these values to the adversary, we use
the Rust type system to enforce secret independence. When
the feature secret-integers is set, all the byte-strings in
Bert13 are treated as potentially secret values. This means
that their contents cannot be inspected, compared, written
on public channels, or used as indices into arrays. Every-
thing handled by the protocol is secret by default, and if the
programmer wishes to look into a byte-string (because they
know its contents are public) they must call the declassify
function.

For example, after record encryption a ciphertext needs
to be declassified before it can be sent on the network, and
we can decide that this is safe because of the protocol se-
curity guarantees. Conversely, when decrypting a record, if
we wish to inspect any part of the message, we must first
declassify it, hence declaring that we are consciously will-
ing to leak these contents. We enforce this strict discipline
throughout the Bert13 implementation.

Table 1: Bert13 performance measurements across 1000 iterations.

Ciphersuite Client Handshake Performance
Cipher Signatures KEM Time/Handshake [us] Throughput [per second]
Chacha20Poly1305 P-256 ECDSA P-256 ECDH 8872 112.70
Chacha20Poly1305 P-256 ECDSA X25519 5287 189.11
Chacha20Poly1305 P-256 ECDSA X25519Kyber768Draft00 6275 159.34
Chacha20Poly1305 P-256 ECDSA X25519MI1Kem?768 6185 161.67

4.3 Rust Types for State Machines

We also rely on the linearity guarantees of Rust types to
implement the TLS 1.3 handshake state machine. When
each message is sent or received, the client or server retrieves
its previous state and generates a new state. By using the
Rust type system, we can enforce that the previous state
has been consumed and hence cannot be used again. For
example, the put_server_hello function which processes a
server hello message has the following structure:

fn put_server_hello(
handshake: &HandshakeData,
state: ClientPostClientHello,
ks: &mut TLSkeyscheduler,
) —> Result<(DuplexCipherStateH,
ClientPostServerHello), TLSError> {
let ClientPostClientHello(...) = state;
0k ((
DuplexCipherStateH: :new(...),
ClientPostServerHello(...)))

In Rust, the argument state is not a pointer, the caller is
transferring ownership of the state to this function which is
consuming the old state and creating a new one. The caller
cannot use the old state after calling this function. This
style of implementing state machines is sometimes called
type state and is usable in any language that provides affine
types like Rust does. We implement the entire handshake
state machine in this style.

4.4 Developer-driven Proof Annotations

The software engineers writing the Rust code can also add
pre-conditions to help with the verification. In some areas
this enforces some safe engineering practices that are other-
wise only enforced by reviews. Take for example the length
check in the listing below. The default way of comparing the
lengths would panic, which will most likely not be caught in
tests. Fuzzing may catch bugs like this. But the verification
statically ensures that this check does not over- or under-
flow. The software engineer can make sure of this by adding
the ”requires” before the function and use the correct way
of comparing the length.

#[requires(self.len() >= start)]

pub(crate) fn find_handshake_message(
&self,
handshake_type: HandshakeType,
start: usize,

) => bool {

if self.len() - start < 4 {
return false;

}

4.5 Implementing Post-Quantum TLS 1.3

As mentioned before, Bert13 supports both classical cipher
suites and Post-Quantum cipher suites. Since Bert13 uses
a KEM based crypto API, supporting Post-Quantum cipher
suites does not require changes to the protocol implementa-
tion.

Bert13 implements the hybrid ciphersuite
X25519MLKEMT768 01’116 defined in [43]. Note that the
exact hybrid specification for TLS 1.3 is still in progress.
However, this ciphersuite is currently implemented by Fire-
fox, Chrome, Cloudflare and others, and is compatible with
the draft RFC Hybrid key exchange in TLS 1.3 [56]. The
shared secret that is used to compute the TLS 1.3 master
secret is defined as the 64 bytes concatenation of the X25519
shared secret and the ML-KEM shared secret shared_secret
= X25519.shared_secret || ML-KEM.shared_secret.

4.6 libcrux: Formally Verified Cryptography

libcrux is a formally verified cryptographic library that pro-
vides all the primitives necessary for TLS 1.3 in Bert13.
It contains code written in Rust and proven with hax [14],
as well as verified Rust code generated from the HACLx
project [63][33]. It provides, in particular, its own verified
Rust implementation of ML-KEM, that is used to provided
support for hybrid post-quantum KEMs in Bert13.

Each algorithm implemented in libcrux is formally veri-
fied for runtime safety (memory safety and crash freedom),
for functional correctness with respect to a high-level math-
ematical specification of the algorithm written in Fx, and

“https://www.iana.org/assignments/t1ls-parameters/
tls-parameters.xhtml

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

for secret independence, a discipline that prevents certain
classes of side channels. Despite including only verified im-
plementations, code from libcrux is often as fast as or faster
than unverified cryptographic implementations.

4.7 Performance and Interoperability

Bert13 is portable across all std targets supported by the
Rust compiler, and the libcrux library. Bare metal no_std
environments are supported in the presence of a global al-
locator. The implementation is compatible with Chrome
(134), Firefox (137), and Cloudflare on all implemented ci-
phersuites.

The Bert13 library supports the following algorithms and
protocols

as signature schemes: RSA-PSS-SHA256,
ECDSA-P256-SHA256, Ed25519

as KEM: X25519, P-256 ECDH, X25519Kyber768-
Draft00, X25519M1Kem768

as session cipher: Chacha20Poly1305

as digest: SHA256, SHA384, SHA512

Other ciphersuites such as AES-GCM can be supported
when using for example HACLx-backed C bindings instead
of the pure Rust implementations used here. While there
may be faster cryptographic implementations out there, the
performance numbers in Tableshovv that Bert13 is a us-
able implementation with performance comparable to the
most popular TLS libraries.

See Table[1]for Bert13 client benchmark results obtained
on a Raspberry Pi 3 Model B Rev 1.2, with 900 MB of RAM
and a Broadcom BCM2835 CPU running at 1.2 GHz. On
this device, to establish a connection, the client 55.8 KB of
stack memory using X25519 as KEM and 85.1 KB using a
post-quantum hybrid KEM, at a binary size of 2980 KB.

5 Key Schedule Security with SSProve

One of the essential parts of the TLS protocol is the key
scheduler. It is responsible for generating secure keys
used throughout the communication between the client and
server, and for eliminating incorrect or invalid invocation of
key generation. An example of an attack on the key sched-
ule is tricking the key schedule to generate the same key for
two different parts of the protocol. Another type of attack
is not including enough randomness or new information into
the key generation. Thus making the newly generated keys
weaker than required. To mitigate these attacks, we ensure
that the implementation in Bert13 is covered by the security
proof from [22].

5.1 State-Separating Proofs (SSP)

The core theorem in [22] is a security proof bounding the
advantage of an adversary to distinguish between a key gen-
erated by invoking the key schedule and a uniformly random
key.

TLS 1.3
handshake

«—mkS—
HKDF-EXPAND
“—mkC

<“—akC—
ABAD-KeylV |
<«—akS—

Figure 4: Calls to key schedule in the handshake protocol

The paper also proves two other theorems. The modular
theorem states that one can introduce a mapping of keys.
This allows a more abstract treatment, thus simplifying the
arguments in the core theorem. The main theorem states the
security of the composition of the modular games is bounded
by a more classical monolithic version of the game, thus en-
suring we can reason about the parts and still get a security
statement for the protocol as a whole.

All the theorems have a pen-and-paper proof [22] in the
state-separating proof (SSP) style [23]. The benefits of using
SSP are that it enables modular reasoning, which is helpful
when trying to scale to a large protocol like key schedule
for TLS 1.3. This is achieved by providing a clear inter-
face for each module (or ‘package’). These modules can be
composed in serial or parallel to create larger and more ad-
vanced packages. Security is shown by using security games:
Given two packages, without any imports, one shows that
an adversary cannot distinguish between them (up to negli-
gible probability). One package describes the real behavior
of the protocol and the other describes the ideal behavior.
A ‘game hop’ replaces the real package with the ideal pack-
age. The entire protocol is defined as the composition of
such packages. By a sequence of game hops, one idealizes
the protocol step by step.

5.2 Mechanizing SSP in SSProve

In this paper we focus on formalizing the core theorem in
SSProve. SSProve is a foundational framework in Rocq for
modular cryptographic proofs in the SSP style [1].

We write the key schedule in Rust and translate the code
into SSProve using hax. This guarantees that not only that
the abstract Key schedule protocol is secure, but also its
Rust implementation. We prove this by showing functional
equivalence between the implementation and the package
specifying the real behavior of the protocol. The equivalence
is another game. We obtain the security guarantees of the
implementation by transitivity.

5.3 The Formalization

The overall structure for the proof of the core theorem is
given by two hybrid arguments. These come naturally from
the package composition structure. The key schedule pro-
tocol is defined in a number of rounds. One of the hybrid
arguments shows that one can idealize one round at a time.
More concretely, we define a package for a single round of
the key schedule parameterized by the round number. The
key schedule package is then given by the composition of
the rounds in serial, since we have a dependence on the
keys of the previous round. The second hybridization ar-
gument comes from the structure of the round itself. The
idealization order from [22| ensures that we can split the
round into groups of packages. Each group has no depen-
dence internally and only depends on packages earlier in
the idealization order. This closely mirrors the steps in the
handshake protocol, as no extra communication is needed

to generate all keys in a group. We only need additional
information when generating the next group in the order.
The hybridization argument states that: from a bound on
the advantage of idealizing each type of package, we obtain
a bound on idealizing the entire round.

The proof [22] first uses the hybrid argument for proving a
bound on the rounds (horizontal) and then the hybrid argu-
ment for the full protocol as a bound on the round number
(vertical). However, during the formalization, we realized
that we can swap the order of the hybrid arguments — do
the vertical proof first for each of the smaller key packages,
and then do the horizontal proof. One reason to do this is
that the vertical proofs are simpler, though more plentiful.
In the last round of the protocol, we do not generate the pre-
share key (PSK) for the next round, so there is some differ-
ence in the interface description for the horizontal package.
By swapping the order, we can handle this misalignment di-
rectly, as the horizontal proof only needs to align with the
package interface of the full protocol when it is the outer
hybrid argument.

5.4 The Implementation

The implementation of the key schedule is written in Rust.
To facilitate the equivalence proof, we modified the imple-
mentation of the key schedule to follow the modular struc-
ture in the proof. That is, we wrote functions and interfaces
based on the description in the state-separating proof (SSP)
packages. This facilitates equivalence proofs, as we just have
to bundle the functions into packages and then show equiv-
alence to the SSProve package line-by-line. Moreover, it
clarifies and modularizes the code base. This use of SSP
for structuring implementations is one of our contributions.
The rewrite of the key schedule made the handshake proto-
col improved readability and highlighted some shortcomings
of the initial Bert13 implementation.

Echoing the Curry-Howard correspondence, (crypto-
graphic) proofs are programs, thus they need to be mod-
ular and parametric. Moreover, to maintain verified code,
we should ensure that the code is close to the specification
used by the proofs; thus, the structure of the proof guides
the structure of the code and visa versa. Working with SSP
is beneficial to this process, as SSP ensures modularity of
proofs and code in the specification, which can be mirrored
by the implementation.

The proof suggest implementing the four functions:
PrntN, which encodes the transition graph as a map to the
parent keys needed to produce a given key; label maps
a key to its label and is used in XTR and XPD to ensure
correctness of the key state; XTR runs key extraction (e.g.
HKDF-EXTRACT), used when there are two parent keys; XPD
runs key expansion (e.g. HKDF-EXPAND), used when there is
only one parent key.

These functions together complete the graph in Fig.
thus implementing the key schedule for TLS. Some compu-
tations can be bundled together, so we compute/derive their
values in rounds. This more or less follows the groupings

generated by the idealization order. For XTR we combine
two keys and a label, while XPD takes one key and some
data.

5.5 Formalization Effort

The following gives a crude overview of the formaliza-
tion/implementation effort.

e The paper proof in [22] (~ 1600 LoT)
e The security proof (~ 7500 LoC)

e The Rust implementation (~ 700 LoC)
e The translation (~ 1200 LoC)

The formalization is a little more than 4 times the length
of the informal proof, which is reasonable, given that the
formalization is more detailed.

We conjure that it is possible to facilitate the proof pro-
cess by automation. The composition proofs are especially
well suited for automation, as most of the proofs are boil-
erplate based on the structure of the composition. We also
spend some effort to argue about disjointedness of package.
This could possibly be simplified using Nominal SSProve |44|
saving about 500 LoC.

The translation of the code is quite close to the original
code, so the size difference is quite small, which is one of the
benefits of using hax over other tools.

5.6 Security Reduction

The security proof in SSProve follows the pen-and-paper
proof [22], which uses Diffie-Hellman for key exchange. In-
stead Bert13 uses a KEM based version of TLS, which is
suitable for agile cryptography as it generalizes both DH
and ML-KEM.

We prove security of Bert13 assuming an IND-CCA se-
cure KEM, such a KEM is provided by a DHKEM or ML-
KEM [4]. The TLS key schedule paper 22| Sec. 6], already
suggest this is possible. For both DHKEM and ML-KEM
libcrux provides verified rust implementations. We assume
that the ML-KEM implementation in Iibcru agrees with
the ML-KEM specification in EasyCrypt. The latter has been
verified to be cryptographically secure [4).

We proved the Core Key Schedule Theorem [22| Ap-
pendix. D], which guarantees that the generated keys re-
main private. This theorem follows from six lemmas, D2-
7 (22| Fig. 17]. We prove the main lemma D6. The others
are direct consequence of the correct implementation of the
cryptographic primitives which we inherit from libcrux.

To sum up, we have reduced the security of Bert13
to the existence of a secure hash function, such as pro-
vided by libcrux. We also rely on libcrux for secure crypto-
graphic primitives such as HKDF-EXTRACT and HKDF-
EXPAND.

8https://cryspen.com/post/ml-kem-implementation/

10

6 Verifying the Protocol Code with ProVerif

ProVerif [21] is an automated tool for protocol verification in
the symbolic model, also known as the Dolev-Yao model 28]
49]. In conventional use of the tool, designers model by hand
their protocol in a process calculus, where cryptographic
primitives are treated in an idealized fashion as constructors
and destructors on terms.

ProVerif then allows protocol designers to formulate
queries on trace properties that should hold on all proto-
col runs, e.g. the occurrence of a certain event in the trace
should imply previous occurrence in the trace of another
event, or certain events should be ruled out for all traces.
This allows, among others, a natural formulation of authen-
tication and confidentiality guarantees as properties off the
set of possible protocol traces.

Namely, if the trace contains an event indicating that a
server has concluded a handshake with a client, obtaining
a session key in the process, we can ask ProVerif to verify
that in all traces this event is preceded by another event
indicating that the client has initiated a handshake with the
server and that in no trace will the session key be revealed
to the attacker. Such properties can be strengthened by
adding expected failure modes, e.g. explicitly allowing the
attacker to learn the server’s longterm secret keys.

We use the hax toolchain to automatically extract a
ProVerif model of the TLS 1.3 handshake from Bert13. We
then write, by hand, the top-level processes that define the
protocol scenario and the security queries that encode the
verification goals.

6.1 Generated Protocol Model

For each protocol function in the source Rust code, hax gen-
erates a ProVerif function modeling its behavior. For ex-
ample, the Rust function put_server_hello is used by the
client to process the server’s hello message. It gets trans-
lated to a ProVerif function:

letfun put_server_hello(

msg : t_HandshakeData,
state : t_ClientPostClientHello,
ks : t_TLSkeyscheduler)

let ClientPostClientHello(
client_random, ciphersuite, sk, psk, tx)
state in

let (sr: t_Bytes, ct: t_Bytes)
parse_server_hello(ciphersuite, msg) in
shared_secret
kem_decap(ciphersuite, ct, sk) in
tx = transcript_add(tx, msg) in
th = transcript_hash(tx) in

shared_secret_handle = key_schedule(...)

let

let
let
let

https://cryspen.com/post/ml-kem-implementation/

This handshake function takes three arguments, an in-
put handshake message msg, an input state, and a han-
dle to the key schedule ks. It first opens up the input
state (which must be the state after sending the client hello)
to extract the current session parameters; it then calls the
parse_server_hello function to parse the incoming mes-
sage as a server hello. If parsing succeeds, it computes
the shared_secret by calling kem_decap, updates the tran-
script hash and starts deriving keys with the key schedule.

The main thing to note here is that the ProVerif model
captures the flow of the Rust code, including the state man-
agement, cryptographic calls, and calls to the message for-
matting and key schedule functions. We model exactly what
the Rust code does, and do not miss any branch or coding
detail.

In total, we translate 104 Rust types to ProVerif types
and 119 functions from Rust to ProVerif constructors, de-
structors or process macros, resulting in a generated model
of 5980 lines. This mainly covers the handshake and record
protocols.

However, the underlying libraries are abstracted in our
ProVerif model: the cryptographic library models KEM en-
capsulation and decapsulation using symbolic constructors
and destructors; the messaging formatting model treats seri-
alization functions as constructors and parsing functions as
destructors, without modeling the precise bit-level formats
of these messages; and the key schedule model uses expand
and extract as opaque constructors. These abstractions are
standard for symbolic analysis, but in this paper, we justify
these assumptions wherever possible, by developing proofs
in SSProve and Fx, and by relying on the correctness of the
underlying libcrux crypto library.

6.2 Hand-written Verification Scenario

To complete our protocol model, we write by hand a top-
level process that composes several sub-processes:

e CreateServer sets up server long term secrets corre-
sponding to the ciphersuite given as an argument.
Client models a client that connects to a server using
a specified ciphersuite; it models the client handshake
state-machine by calling the generated protocol func-
tions (like put_server_hello) in sequence.

Server which accepts connections from clients; it
reads long-terms secrets from a table populated by
CreateServer and then calls a sequence of server-side
functions generated from the Rust code.
CompromiseServer which allows the attacker to com-
promise server long-term secrets based on the server
name, thereby emitting a LeakServerCertSK event in

the trace.
process
ICreateServer (SHA256_Chacha20Poly1305. . .)
(CINE))

| !'Client (SHA256_Chacha20Poly1305...)

11

(G)
| !'Server() | !CompromiseServerCertSK()

Each of these sub-processes is replicated, which means
that we model an unbounded number of client and server
sessions, and an unbounded number of compromises. We
also allow clients and servers to run any non-PSK cipher-
suite. The attacker is not specifically modeled; instead the
ProVerif attacker is any process running in parallel to the
protocol which can read and write on public channels and
make use of its own keys as well as compromised keys, and
can interfere with any number of sessions to try and break
the security goals of the protocol. This sets up our verifica-
tion scenario.

6.3 Protocol Analysis

Now that we have the protocol model, we can ask ProVerif to
prove that the model provides server authentication, as well
as session key forward secrecy for authenticated sessions.

At the end of the handshake, the client and server con-
struct a duplex cipher state cipher_state, which contains
among others the choice of AEAD algorithm, the client-to-
server key akC as well as the server-to-client key pair aksS.
We write cipher_state(akC) to denote that akC is part
of a cipher state. We state our security goals for the TLS
handshake in terms of these cipherstates.

Server Authentication. We show that whenever a client
finishes the handshake with a given server, the server must
have finished as well, deriving the same cipherstate. This
holds unless the server’s long term certificate private key
was compromised.

query
server_name: t_Bytes,
cipher_state: t_DuplexCipherState,
client_state: t_ClientPostClientFinished,
server_state: t_ServerPostServerFinished;

event (ClientFinished(server_name,
cipher_state,
client_state))
==
event (ServerFinished (server_name,
cipher_state,
server_state))
| | event(LeakServerCertSK(server_name)) .
ProVerif shows verifies this query in under 2s.
If we ask ProVerif to prove that this query holds without
the clause for server compromise, ProVerif finds an attack
within 3 seconds that uses the compromised server key.

Session Key (Forward) Secrecy. We show that if the
attacker learns a session key, then the server’s long term
certificate private key was compromised before the client
was finished.

query
i: time, j:time,

server_name: t_Bytes,

cipher_state: t_DuplexCipherState,

client_state: t_ClientPostClientFinished;

event(ClientFinished(server_name,
cipher_state(akS),
client_state))@i
&& attacker (akS)
==5
event (LeakServerCertSK(server_name))Q@j
g i > j.

Hence, if the attacker learns the server’s private key and
uses it to impersonate the server, it may then learn the ses-
sion key akS established in the session. In all other cases,
the session keys are confidential. In particular, session keys
established before the server compromise remain confiden-
tial.

Message integrity and confidentiality As corollaries
of the handshake security goals above, we can also ask
ProVerif to prove the integrity and confidentiality of each
application data message sent or received in either direc-
tion.

6.4 Post-Quantum Security against
Harvest-Now-Decrypt-Later Attacks

Bert13 implements post-quantum ciphersuites for TLS 1.3
and so we also analyze whether the protocol is secure against
a class of quantum adversaries. In particular, we model
Harvest-Now-Decrypt-Later attackers, in the same way as
prior work on symbolic analysis of post-quantum proto-
cols [18].

We include in our model the possibility that at some time,
marked by an event, the attacker is able to compromise all
Diffie-Hellman constructions and signature algorithms. Af-
ter this time, the attacker can obtain Diffie-Hellman private
keys and forge signatures.

We then ask if our protocol model is still secure, if the
KEM constrution is unaffected. ProVerif is able to prove
that all the queries above still hold, as long as the quantum
apocalypse occurs after the session is completed. In other
words, as long as we use a PQ-KEM, a passive attacker
today who records all messages cannot break the TLS 1.3
guarantees using a quantum computer in the future.

7 Verifying Runtime Safety and
Unambiguous Message Formats with Fx

Using the hax toolchain, we translate the full protocol imple-
mentation to purely functional code in Fx. This includes all
the key schedule code, the message formatting modules, the

12

protocol state machine, and the core handshake and record
protocol code, all the way up to the protocol API. The to-
tal amount of Rust code we process is 3264 lines (without
comments) in 8 modules, which translate to 10964 lines of
Fx.

7.1 Runtime Safety

Rust is a memory-safe language equipped with a strong
type system. The Rust borrow-checker enforces that mu-
table variables cannot be aliased, and is able to impose a
strong discipline over the use of memory in a program. The
hax toolchain relies on this discipline to translate Rust code
with side-effects into purely functional Fx.

However, although the Rust compiler ensures that safe
Rust cannot access memory out of bounds, programs can
still try, and this will result in a panic, an unrecoverable
exception where the program essentially crashes. Other lan-
guage features can also panic: for example, arithmetic over
a machine integer that results in an out-of-bounds value is
undefined behavior and will panic in debug builds, and so
can calls to unwrap on a Result or Option.

When hax translates a potentially-panicking Rust func-
tion to Fx, it requires the programmer to prove that the
function is total, that is, it can never panic. For example,
consider the funcion find_handshake_message excerpted in
Section When translated to Fx, it has the following im-
plementation:

let rec impl_HandshakeData__find_handshake_message
(self: t_HandshakeData)
(handshake_type: t_HandshakeType)
(start: usize)

if ((impl_HandshakeData__len self <: usize) -!
start <: usize) <. mk_usize 4

then false

else ...

Here, the function uses the strict subtraction operator -!
which requires that the result of the subtraction must be
within the bounds of the usize type, and hence cannot be
negative. When we try to type-check this function in Fx, Fx
immediately flags an error saying that it found a situation
when this subtraction might underflow.

However, when we add the relevant pre-condition to the
Rust code, the generated Fx function has a type declaration
as follows:

val impl_HandshakeData__find_handshake_message
(self: t_HandshakeData)
(handshake_type: t_HandshakeType)
(start: usize)
Prims. Pure bool
(requires (impl_HandshakeData__len self <: usize)
> start)

With this pre-condition, Fx is able to automatically prove
that the subtraction is safe and that the full function is
panic-free.

In this case, the function was correct, we just needed a
type annotation, but during the course of our verification
we found a number of cases, usually in message parsing
functions, where the code was allowing for panics and we
needed to change it to ensure panic-freedom. This is partic-
ularly important for code that runs on inputs taken from the
untrusted network, since the attacker may have send us a
maliciously crafted message to crash our software to trigger
a denial-of-service, or worse.

One example of such a function is the
parse_client_hello function, the very first function
a TLS server calls on data it receives over a connection.
The body of the function looks as follows:

let version = bytes2(3, 3);
0;
check_eq_with_slice(version.as_raw(),
client_hello.as_raw(),

next, next + 2)7;

let mut next =

next += 2;

check(client_hello.len() >= next + 32)7;

let client_random
client_hello.slice_range(next..next + 32);

This code wuses the variable next as a pointer
into the input client_hello. It starts by calling
check_eq_with_slice to check that the first two bytes
of the input matches the expected protocol version (this
function returns an error if the input is too short or the
match fails). It then increments next by 2 and extracts
the client random value by slicing the next 32 bytes of the
client_hello, after checking that the input has a sufficient
number of bytes.

In an earlier version of this function, there was no call
to check before the client random was extracted. Conse-
quently, an attacker could have sent any message of size less
than 34 and crashed the server (with a panic). Verifica-
tion with Fx finds this bug, and adding the check suffices to
prevent it.

By adding a combination of such checks (when needed)
and pre-conditions, we are able to prove that all 3K+ lines
of the protocol implementation are panic free.

7.2 Proving Transcript Unambiguity

As discussed in Section the security of the TLS hand-
shake relies crucially on the protocol transcript unambi-
giously representing the contents of the handshake. How-
ever, in the ProVerif analysis of Section@ we abstract away
from the low-level formatting details of the handshake mes-
sages and transcript, instead simply treating them as sym-
bolic constructors.

13

Abstracting away from message formats is quite usual in
protocol security analyses; indeed, other machine-checked
proofs of TLS 1.3 also make the same assumption,
and so do all pen-and-paper proofs. The main reason for
this assumption is that handling the bit-level formatting de-
tails is annoying and seems irrelevant to the cryptographic
analysis of the protocol.

In this paper, we seek to verify protocol implementations,
not abstract models, and so we need to justify this abstrac-
tion. Furthermore, as many recent works show, ambiguity
in important cryptographic inputs, like the TLS 1.3 tran-
script, can sometimes lead to serious attacks and should not
be ignored [61].

Consider the function that serializes the client hello:

#[cfg_attr(feature = "hax-pv", pv_constructor)]
pub(crate) fn client_hello(

algorithms: &Algorithms,

client_random: Random,

kem_pk: &KemPk,

server_name: &Bytes,

session_ticket: &0Option<Bytes>,
) —> Result<(HandshakeData, usize), TLSError> {

}

The annotation above the function says that this function
is treated as a constructor in the ProVerif analysis; in other
words, we assume that given a serialized client hello, we
can unambiguously parse from it the algorithms the client
offered to the server, the client random, the client’s public
key, the name of the server the client wished to connect to,
and the session ticket pointing to the pre-shared key (if any).

This serialized client hello is added to the transcript at
both client and server, and hence after authenticating the
transcript in the Finished messages, we know that the client
and server have the same view of these fields, which is crucial
for a key agreement and negotiation protocol like the TLS
handshake.

To justify the assumption that the client_hello func-
tion operates like an injective constructor, we add a second
annotation to the function, this time a post-condition for
use in the Fx backend:

#[hax_lib: :ensures(|result| match result {
Result::0k((ch,trunc_len)) => {
trunc_len <= ch.len() &&
match parse_client_hello(algorithms, &ch) {
Result::0k((cr,_,sn,pk,st,_,_)) =>

cr == client_random &&
&pk == kem_pk &&
&sn == server_name &&
&st == session_ticket,
_ => false }},

_ => true})]

pub(crate) fn client_hello(...) {...

Table 2: Formal Verification Results for Bert13

Backend Prover Rust Modules

Rust LoC Translated LoC Properties Proven

Time Taken for Proofs (s)

SSProve 1 425 815
ProVerif 3 1723 5980
Fx 8 3264 10964

Core Key Schedule Security 11m17s
Forward Secrecy, Authentication 20s
HNDL Post-Quantum Security

Runtime Safety, Unambiguous Formats 1m21s

The ensures clause states that if the client_hello func-
tion succeeds and returns a serialized value ch, then if we
parse this resulting value using the parse_client_hello
function, we obtain the same values that were passed
into client_hello. In other words, parse_client_hello
works as an inverse of client_hello. So, if the client
and server have the same transcript, and hence the same
client_hello, they must also agree on all the inputs to
the client_hello function. The post-condition also tracks
other variables like trunc_len which we ignore here, but are
needed for the panic-freedom proofs elsewhere in the proto-
col code.

This post-condition is then proved for the code of
client_hello in Fx. In a similar way, we annotate and
prove unambiguity for all the message formats in TLS 1.3
and hence for the transcript.

8 Discussion

In this paper, we have demonstrated a verification method-
ology for cryptographic protocol implementations written
in Rust. The key features of this methodology are that it
targets code written by professional Rust developers (not
verification researchers), and that we use multiple special-
ized provers to handle different parts of the proof, rather
than rely on a single proof framework. In this way, we were
able to prove both secrurity and functional properties for
Bert13, our post-quantum TLS 1.3 implementation. Our
implementation and all our proofs are provided in the sub-
mitted artifact.

The formal verification results for Bert13 are summarized
in Table We used three tools: SSProve for cryptographic
security of the key schedule code, ProVerif for the symbolic
security of the protocol code, and Fx for runtime safety of
the full protocol implementation and proofs about message
formatting. Each tool is well-suited to its task, and this can
be seen by the time and effort we spent on each task. Us-
ing a single framework for all proofs would have, we believe,
suited one task but made the others much harder. Con-
versely, using a single framework has the advantage that the
the properties proved for different parts of the coe can be
formally connected with each other. We forego this benefit
in favour of our pragmatic approach which makes it possible
to effectively verify real-world Rust code.

Comparison with Other Approaches. We have already
discussed a number of related works throughout the paper.

14

Here, we focus on works that seek to verify cryptographic
protocol implementations.

The miTLS project [17] developed a verified reference im-
plementation of TLS 1.2 in a functional programming lan-
guage, but this code was never considered a practical imple-
mentation.

Project Everest |13] was an umbrella project that sought
to build a formally verified implementation of the entire
HTTPS stack. The project produced verified cryptographic
libraries [62 52|, message formatting libraries |53, and a
TLS 1.3 implementation |26, all of which were written and
verified in the Fx framework before being compiled to C.
The generated C code was incorporated into many main-
stream software projects and hence was used in production.
However, the source code in Fx is arguably inscrutable to
protocol developers, and the proofs for TLS 1.3 were in-
complete, since they only covered the record layer, not the
handshake.

RefTLS [42] used another compilation toolchain to com-
pile a TLS 1.3 implementation written in JavaScript to mod-
els in ProVerif and CryptoVerif [20]. Hence, the authors were
able to analyze the same protocol code in both the symbolic
and computational models. However, the source code in
JavaScript was not meant to be used in production, and
the proofs did not include the message formatting code or
guarantee runtime safety.

Implementations of protocols other than TLS have also
been formally verified, including the Signal protocol |51,
the Noise protocol framework [40], and messaging layer se-
curity |60]. All of these implementations are in functional
languages, although some of them can be compiled to C or
WebAssembly.

Future Work. We believe the methodology demonstrated
in this paper is effective and flexible and can be extended
with other verification tools and applied to other protocol
implementations. In future work, we intend to explore the
use of computational proof frameworks like EasyCrypt and
CryptoVerif to verify stronger security properties for the
protocol code than one can prove with ProVerif. We would
also like to extend the functional verification guarantees be-
yond the proocol layer into the X.509 cerification library and
the networking APIs. As the post-quantum transition gets
into full swing, we believe formal verification techniques like
the one presented in this paper will be essential for us to
have confidence in the new set of protocols and their imple-
mentations.

References

1]

Carmine Abate, Philipp G. Haselwarter, Exequiel Ri-
vas, Antoine Van Muylder, Théo Winterhalter, Catalin
Hritcu, Kenji Maillard, and Bas Spitters. SSProve:
A foundational framework for modular cryptographic
proofs in Coq. In CSF, pages 1-15. IEEE, 2021.

David Adrian, Karthikeyan Bhargavan, Zakir Du-
rumeric, Pierrick Gaudry, Matthew Green, J. Alex Hal-
derman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, Benjamin VanderSloot, Eric
Wustrow, Santiago Zanella-Béguelin, and Paul Zim-
mermann. Imperfect forward secrecy: How diffie-
hellman fails in practice. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October
12-16, 2015, pages 5-17. ACM, 2015.

Nadhem J. AlFardan and Kenneth G. Paterson. Lucky
thirteen: Breaking the TLS and DTLS record proto-
cols. In 2013 IEEE Symposium on Security and Pri-
vacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013,
pages 526-540. IEEE Computer Society, 2013.

José Bacelar Almeida, Santiago Arranz Olmos, Manuel
Barbosa, Gilles Barthe, Francois Dupressoir, Benjamin
Grégoire, Vincent Laporte, Jean-Christophe Léchenet,
Cameron Low, Tiago Oliveira, Hugo Pacheco, Miguel
Quaresma, Peter Schwabe, and Pierre-Yves Strub. For-
mally verifying Kyber. In CRYPTO 202/, pages 384—
421. Springer, 2024.

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe,
Arthur Blot, Benjamin Grégoire, Vincent Laporte,
Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and
Pierre-Yves Strub. Jasmin: High-assurance and high-
speed cryptography. In CCS, pages 1807-1823. ACM,
2017.

V. Astrauskas, P. Miiller, F. Poli, and A. J. Sum-
mers. Leveraging Rust types for modular specifica-
tion and verification. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), vol-
ume 3, pages 147:1-147:30, 2019.

Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky,
Nadia Heninger, Maik Dankel, Jens Steube, Luke
Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Késper, Shaanan Cohney, Susanne
Engels, Christof Paar, and Yuval Shavitt. DROWN:
breaking TLS using sslv2. In Thorsten Holz and Ste-
fan Savage, editors, 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12,
2016, pages 689-706. USENIX Association, 2016.

Matilda Backendal, Miro Haller, and Kenneth G. Pater-
son. MEGA: malleable encryption goes awry. In 44th

15

[11]

[14]

[15]

IEEE Symposium on Security and Privacy, SP 2023,
San Francisco, CA, USA, May 21-25, 2023, pages 146—
163. IEEE, 2023.

Manuel Barbosa, Gilles Barthe, Karthik Bhargavan,
Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan
Parno. SoK: Computer-Aided Cryptography. In SP,
pages 777-795. IEEE, 2021.

Gilles Barthe, Frangois Dupressoir, Benjamin Grégoire,
César Kunz, Benedikt Schmidt, and Pierre-Yves Strub.
Easycrypt: A tutorial. In FOSAD, volume 8604 of
Lecture Notes in Computer Science, pages 146-166.
Springer, 2013.

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Four-
net, Andrew D. Gordon, and Sergio Maffeis. Refine-
ment types for secure implementations. ACM Trans.
Program. Lang. Syst., 33(2):8:1-8:45, 2011.

Benjamin Beurdouche, Karthikeyan Bhargavan, An-
toine Delignat-Lavaud, Cédric Fournet, Markulf
Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and
Jean Karim Zinzindohoue. A messy state of the union:
taming the composite state machines of TLS. Commun.
ACM, 60(2):99-107, 2017.

Karthikeyan Bhargavan, Barry Bond, Antoine
Delignat-Lavaud, Cédric Fournet, Chris Hawblitzel,
Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss,
K. Rustan M. Leino, Jay R. Lorch, Kenji Maillard,
Jianyang Pan, Bryan Parno, Jonathan Protzenko,
Tahina Ramananandro, Ashay Rane, Aseem Rastogi,
Nikhil Swamy, Laure Thompson, Peng Wang, Santiago
Zanella-Béguelin, and Jean Karim Zinzindohoue.
Everest: Towards a verified, drop-in replacement of
HTTPS. In Benjamin S. Lerner, Rastislav Bodik, and
Shriram Krishnamurthi, editors, 2nd Summit on Ad-
vances in Programming Languages, SNAPL 2017, May
7-10, 2017, Asilomar, CA, USA, volume 71 of LIPlIcs,
pages 1:1-1:12. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2017.

Karthikeyan Bhargavan, Maxime Buyse, Lucas
Franceschino, Lasse Letager Hansen, Franziskus
Kiefer, Jonas Schneider-Bensch, and Bas Spit-
ters. hax: Verifying security-critical rust software
using multiple provers. In Verified Software. The-
ories, Tools and FExperiments (VSTTE), 2024.
https://eprint.iacr.org/2025/142,

Karthikeyan Bhargavan, Antoine Delignat-Lavaud,
Cédric Fournet, Alfredo Pironti, and Pierre-Yves Strub.
Triple handshakes and cookie cutters: Breaking and fix-
ing authentication over TLS. In 2014 IEEE Symposium
on Security and Privacy, SP 201/, Berkeley, CA, USA,
May 18-21, 2014, pages 98-113. IEEE Computer Soci-
ety, 2014.

https://eprint.iacr.org/2025/142

[16]

[18]

[19]

[20]

[21]

(23]

[24]

Karthikeyan Bhargavan, Cédric Fournet, Andrew D.
Gordon, and Stephen Tse. Verified interoperable im-
plementations of security protocols. ACM Trans. Pro-
gram. Lang. Syst., 31(1):5:1-5:61, 2008.

Karthikeyan Bhargavan, Cédric Fournet, Markulf
Kohlweiss, Alfredo Pironti, and Pierre-Yves Strub. Im-
plementing TLS with verified cryptographic security.
In 2013 IEEE Symposium on Security and Privacy, SP
2013, Berkeley, CA, USA, May 19-22, 2013, pages 445—
459. IEEE Computer Society, 2013.

Karthikeyan Bhargavan, Charlie Jacomme, Franziskus
Kiefer, and Rolfe Schmidt. Formal verification of the
PQXDH post-quantum key agreement protocol for end-
to-end secure messaging. In Davide Balzarotti and
Wenyuan Xu, editors, 33rd USENIX Security Sympo-
stum, USENIX Security 2024, Philadelphia, PA, USA,
August 14-16, 2024. USENIX Association, 2024.

Karthikeyan Bhargavan and Gaétan Leurent. Tran-
script collision attacks: Breaking authentication in tls,
IKE and SSH. In 23rd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016. The Internet
Society, 2016.

Bruno Blanchet. CryptoVerif: Computationally sound
mechanized prover for cryptographic protocols. In
Dagstuhl seminar “Formal Protocol Verification Ap-
plied, volume 117, page 156, 2007.

Bruno Blanchet. Automatic verification of security pro-
tocols in the symbolic model: The verifier proverif. In
FOSAD, volume 8604 of Lecture Notes in Computer
Science, pages 54-87. Springer, 2013.

Chris Brzuska, Antoine Delignat-Lavaud, Christoph
Egger, Cédric Fournet, Konrad Kohbrok, and Markulf
Kohlweiss. Key-schedule security for the TLS 1.3 stan-
dard. Cryptology ePrint Archive, Paper 2021/467,
2021.

Chris Brzuska, Antoine Delignat-Lavaud, Cédric Four-
net, Konrad Kohbrok, and Markulf Kohlweiss. State
separation for code-based game-playing proofs. In
Advances in Cryptology — ASIACRYPT 2018, page
222-249. Springer, 2018.

Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A comprehensive sym-
bolic analysis of TLS 1.3. In Bhavani Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors,
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017,
pages 1773-1788. ACM, 2017.

16

[25]

[26]

[27]

[31]

[32]

Joyanta Debnath, Christa Jenkins, Yuteng Sun,
Sze Yiu Chau, and Omar Chowdhury. ARMOR: A for-
mally verified implementation of X.509 certificate chain
validation. In IEEE Symposium on Security and Pri-
vacy, SP 2024, San Francisco, CA, USA, May 19-23,
2024, pages 1462-1480. IEEE, 2024.

Antoine Delignat-Lavaud, Cédric Fournet, Markulf
Kohlweiss, Jonathan Protzenko, Aseem Rastogi, Nikhil
Swamy, Santiago Zanella-Béguelin, Karthikeyan Bhar-
gavan, Jianyang Pan, and Jean Karim Zinzindohoue.
Implementing and proving the TLS 1.3 record layer. In
2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, May 22-26, 2017, pages
463-482. IEEE Computer Society, 2017.

Xavier Denis, Jacques-Henri Jourdan, and Claude
Marché. Creusot: a foundry for the deductive verifica-
tion of rust programs. In International Conference on
Formal Engineering Methods, pages 90-105. Springer,
2022.

Danny Dolev and Andrew Chi-Chih Yao. On the secu-
rity of public key protocols. IEEE Trans. Inf. Theory,
29(2):198-207, 1983.

Benjamin Dowling, Marc Fischlin, Felix Giinther, and
Douglas Stebila. A cryptographic analysis of the TLS
1.3 handshake protocol. J. Cryptol., 34(4):37, 2021.

Andres Erbsen, Jade Philipoom, Jason Gross, Robert
Sloan, and Adam Chlipala. Simple high-level code for
cryptographic arithmetic: With proofs, without com-
promises. ACM SIGOPS Oper. Syst. Rev., 54(1):23-30,
2020.

Nima Rahimi Foroushaani and Bart Jacobs. Modular
formal verification of rust programs with unsafe blocks,
2022.

Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves
Strub. Modular code-based cryptographic verification.
In Yan Chen, George Danezis, and Vitaly Shmatikov,
editors, Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011, pages
341-350. ACM, 2011.

Aymeric Fromherz and Jonathan Protzenko. Compiling
C to safe Rust, formalized, 2024.

Lennard Gaher, Michael Sammler, Ralf Jung, Robbert
Krebbers, and Derek Dreyer. RefinedRust: A type sys-
tem for high-assurance verification of rust programs.
Proceedings of the ACM on Programming Languages,
8(PLDI):1115-1139, 2024.

Cesar Pereida Garcia and Billy Bob Brumley.
Constant-Time callees with Variable-Time callers. In

[36]

26th USENIX Security Symposium (USENIX Secu-
rity 17), pages 83-98, Vancouver, BC, August 2017.
USENIX Association.

Martin Georgiev, Subodh Iyengar, Suman Jana,
Rishita Anubhai, Dan Boneh, and Vitaly Shmatikov.
The most dangerous code in the world: validating SSL
certificates in non-browser software. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, the ACM Con-
ference on Computer and Communications Security,
CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages
38-49. ACM, 2012.

Philipp G. Haselwarter, Benjamin Salling Hvass,
Lasse Letager Hansen, Théo Winterhalter, Catalin
Hritcu, and Bas Spitters. The last yard: Foundational
end-to-end verification of high-speed cryptography. In
CPP, pages 30-44. ACM, 2024.

Philipp G. Haselwarter, Exequiel Rivas, Antoine Van
Muylder, Théo Winterhalter, Carmine Abate, Niko-
laj Sidorenco, Catalin Hritcu, Kenji Maillard, and Bas
Spitters. SSProve: A Foundational Framework for
Modular Cryptographic Proofs in Coq. ACM Trans.
Program. Lang. Syst., 45(3):15:1-15:61, 2023.

Son Ho and Jonathan Protzenko. Aeneas: Rust verifi-
cation by functional translation. PACM PL, 6(ICFP),
2022.

Son Ho, Jonathan Protzenko, Abhishek Bichhawat, and
Karthikeyan Bhargavan. Noise*: A library of verified
high-performance secure channel protocol implementa-
tions. In 43rd IEEE Symposium on Security and Pri-
vacy, SP 2022, San Francisco, CA, USA, May 22-26,
2022, pages 107-124. IEEE, 2022.

Franziskus Kiefer, Karthikeyan Bhargavan, Lucas
Franceschino, Denis Merigoux, Lasse Letager Hansen,
Bas Spitters, Manuel Barbosa, Antoine Séré, and
Pierre-Yves Strub. HACSPEC: a gateway to high-
assurance cryptography. RealWorldCrypto, 2023.

Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno
Blanchet. Automated verification for secure messaging
protocols and their implementations: A symbolic and
computational approach. In 2017 IEEE European Sym-
posium on Security and Privacy, FuroSE&P 2017, Paris,
France, April 26-28, 2017, pages 435-450. IEEE, 2017.

Kris Kwiatkowski, Panos Kampanakis, Bas West-
erbaan, and Douglas Stebila. Post-quantum hy-
brid ECDHE-MLKEM Key Agreement for TLSv1.3.
Internet-Draft draft-kwiatkowski-tls-ecdhe-mlkem-03,
Internet Engineering Task Force, December 2024. Work
in Progress.

Markus Krabbe Larsen and Carsten Schiirmann. Nomi-
nal state-separating proofs. Cryptology ePrint Archive,
Paper 2025/598, 2025.

17

[45]

[47]

[48]

[49]

[50]

[51]

[52]

Andrea Lattuada, Travis Hance, Chanhee Cho,
Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon How-
ell, Bryan Parno, and Chris Hawblitzel. Verus: Verify-
ing rust programs using linear ghost types. Proc. ACM
Program. Lang., 7, 2023.

Nico Lehmann, Adam T Geller, Niki Vazou, and Ranjit
Jhala. Flux: Liquid types for rust. Proceedings of the
ACM on Programming Languages, 7(PLDI):1533-1557,
2023.

Nikolaos Makriyannis, Oren Yomtov, and Arik Galan-
sky. Practical key-extraction attacks in leading MPC
wallets. In Bo Luo, Xiaojing Liao, Jun Xu, Engin
Kirda, and David Lie, editors, Proceedings of the 202/
on ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2024, Salt Lake City, UT,
USA, October 14-18, 2024, pages 3053-3064. ACM,
2024.

Nikos Mavrogiannopoulos, Frederik Vercauteren, Ves-
selin Velichkov, and Bart Preneel. A cross-protocol at-
tack on the TLS protocol. In Ting Yu, George Danezis,
and Virgil D. Gligor, editors, the ACM Conference
on Computer and Communications Security, CCS’12,
Raleigh, NC, USA, October 16-18, 2012, pages 62-72.
ACM, 2012.

Roger M. Needham and Michael D. Schroeder. Us-
ing encryption for authentication in large networks of
computers. Commun. ACM, 21(12):993-999, December
1978.

Kenneth G. Paterson, Matteo Scarlata, and Kien Tuong
Truong. Three lessons from threema: Analysis of a se-
cure messenger. In Joseph A. Calandrino and Carmela
Troncoso, editors, 32nd USENIX Security Symposium,
USENIX Security 2023, Anaheim, CA, USA, August 9-
11, 2023, pages 1289-1306. USENIX Association, 2023.

Jonathan Protzenko, Benjamin Beurdouche, Denis
Merigoux, and Karthikeyan Bhargavan. Formally ver-
ified cryptographic web applications in webassembly.
In 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019,
pages 1256-1274. IEEE, 2019.

Jonathan Protzenko, Bryan Parno, Aymeric Fromherz,
Chris Hawblitzel, Marina Polubelova, Karthikeyan
Bhargavan, Benjamin Beurdouche, Joonwon Choi, An-
toine Delignat-Lavaud, Cédric Fournet, Natalia Kula-
tova, Tahina Ramananandro, Aseem Rastogi, Nikhil
Swamy, Christoph M. Wintersteiger, and Santiago
Zanella-Béguelin. Evercrypt: A fast, verified, cross-
platform cryptographic provider. In 2020 IEEE Sympo-
sium on Security and Privacy, SP 2020, San Francisco,
CA, USA, May 18-21, 2020, pages 983-1002. IEEE,
2020.

[53]

(61]

Tahina Ramananandro, Antoine Delignat-Lavaud,
Cédric Fournet, Nikhil Swamy, Tej Chajed, Nadim
Kobeissi, and Jonathan Protzenko. Everparse: Verified
secure zero-copy parsers for authenticated message for-
mats. In 28th USENIX Security Symposium, USENIX
Security 2019, Santa Clara, CA, USA, August 14-16,
2019, pages 1465-1482. USENIX Association, 2019.

Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, August 2018.

Mike Rosulek. The Joy of Cryptography. 2025. https:
//joyofcryptography.com.

Douglas Stebila, Scott Fluhrer, and Shay Gueron. Hy-
brid key exchange in TLS 1.3. Internet-Draft draft-ietf-
tls-hybrid-design-12, Internet Engineering Task Force,
January 2025. Work in Progress.

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem
Rastogi, Antoine Delignat-Lavaud, Simon Forest,
Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves
Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue,
and Santiago Zanella Béguelin. Dependent types and
multi-monadic effects in F*. In Rastislav Bodik and Ru-
pak Majumdar, editors, Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, pages 256-270. ACM,
2016.

The Coq Development Team. The Coq Proof Assistant.
2024.

Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan
Chong, and Adrian Sampson. Verifying dynamic trait
objects in rust. In Proceedings of the 44th Interna-
tional Conference on Software Engineering: Software
Engineering in Practice, pages 321-330, 2022.

Théophile Wallez, Jonathan Protzenko, Benjamin
Beurdouche, and Karthikeyan Bhargavan. Treesync:
Authenticated group management for messaging layer
security. In Joseph A. Calandrino and Carmela
Troncoso, editors, 32nd USENIX Security Symposium,
USENIX Security 2023, Anaheim, CA, USA, August 9-
11, 2023, pages 1217-1233. USENIX Association, 2023.

Théophile Wallez, Jonathan Protzenko, and
Karthikeyan Bhargavan. Comparse: Provably se-
cure formats for cryptographic protocols. In Weizhi
Meng, Christian Damsgaard Jensen, Cas Cremers, and
Engin Kirda, editors, Proceedings of the 2028 ACM
SIGSAC Conference on Computer and Communi-
cations Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023, pages 564-578. ACM, 2023.

Jean Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche. Hacl*:

18

[64]

A verified modern cryptographic library. In Bha-
vani Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 1789-1806. ACM, 2017.

Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche. Hacl*:
A verified modern cryptographic library. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 17891806, 2017.

Sacha Elie Ayoun, Xavier Denis, Petar Maksimovi¢,
and Philippa Gardner. A hybrid approach to semi-
automated rust verification, 2025.

https://joyofcryptography.com
https://joyofcryptography.com

100 CHAPTER 5. BERTIE

5.3 Summary

In this paper we present Bertl3, a TLS 1.3 implementation, for which we prove
runtime safety and correctness of the message formatting in F*; we show cryptographic
security of the key schedule code in SSProve and the symbolic security of the protocol
code in ProVerif. The implementation and verification of Bert13 is developer-driven
in that it utilizes Hax; i.e., a Rust expert can write the implementation and add
annotations to guide the verification. Then an automation or proof engineer can finish
the proofs from the translation of the annotated code. The primary takeaway is that
we prove properties about an actual implementation, which are usually assumed in
proofs but are often a source for real attacks. We achieve this while also showing full
protocol properties by using a multi-prover framework.

5.4 Details of the Security Proof for TLS 1.3 Key Scheduler

A full presentation of the proof can be found in the original TLS 1.3 key schedule
paper [19, 20]. Here, we will present the technical details of the formalization based
on that paper proof.

Building the Parts

First we define some more complex operations than just parallel and serial composition
of packages. Then we introduce a way of decomposing and indexing the packages for
the TLS 1.3 key schedule.

Hierarchies and Collections of Packages

A useful definition is a form of mapping [21, Section 5], defining a set of packages p
in parallel indexed by some element of aseti € S

®Pi,
=
and its dependent version
® VH;,:i €S, DiH;,-
ies

Setting S = N is particularly useful to parameterize the packages with the round
number as

) VHie i <k, pim,,
ieN

or alternatively directly using ordinals

® pi

ie{xeN|x<k}

5.4. DETAILS OF THE SECURITY PROOF FOR TLS 1.3 KEY SCHEDULERO1

These hierarchies of collections of packages have some useful properties. Disjointness
of hierarchies is equivalent to all elements being disjoint

QRrin@ai=0 < vicA, pinQ)qi =0,
icA icB i€B
xﬂ®pi:® — Vies§, xNp; =0,
=
and
xNy=0 <= Yaex,Vbey a#b.

Thus, we can compute

®piﬂ®q,~:® = Va6®p,~, Vb€®qi, a#b.

icA icB i€A icB
We have similar properties for subsets

QpiCP < VacQpi,alP

ieS i€cA

and
vxeSs, pr S Qpi

icS

There are also useful identity properties
Xpr=p
_es
when S # 0 or p = 0. Hierarchies can be split into subsets

®Pi: ®Pi® ® pi

i€s €S| i€S\S;
for §; C S. None of the above equations are package specific, so it also generalizes to
the interfaces.
Disjoint Namespace

We define a disjoint allocation of function names (natural numbers) indexed by key
name 7, round index ¢, and function type ¢ as

FnNumber, ¢, ::= KNy, + - |KN|+1-|KN|-(d + 1)+ offset,

where KNy, is the index of n, | -| is the size, d is a global upper bound on the number
of rounds, and offset shifts the index to allow a number of predefined functions not
following this scheme. For TLS we have

KN = [L,ES,EEM, CET, BIND, BINDER, HS, SHT, CHT, Hga1+,

102 CHAPTER 5. BERTIE

AS,RM, CAT, SAT, EAM, PSK, Oga1+, Esart, ML-KEM, Orxy]

using the indexing notation we have, e.g., KNcgr = 3. The definition of FnNumber
has the disjointness properties we want, i.e.,

Vny np, ny #np = Ve, FnNumber,, ¢, #* FnNumber, ¢,
VO by, £y £ by = Vnt, FnNumber, ¢, =+ FnNumber, 4, ;
Vit tr,) £ 1p = Vn L, FnNumber, ¢, #+ FnNumber, ¢, .

So if the key name, the index, or the function types differ, then the function names
differ. Furthermore, the function name is never below offset

Vnlt, k <offset = FnNumber,, ;; # k.
We can combine this into a single statement,

Vniny by bty 1o,
((h =t) = ({1 # €2V ny # ny)) = FnNumber,, ¢, ;, # FnNumber,, ¢, ;.

Composition for Key Packages

We start by defining a construct for functions over a set of names and index

zd,S(pn,E) = ® ® Pn.e-

le{xeN|x<d} nes

We use .Zs when using the globally defined round upper bound d. We now categorize
keys into
XTR ::= {ES,HS,AS}
XPD ::= {PSK,Ega1, EEM, CET, BIND, BINDER, SHT, CHT, Hga1+, RM, CAT, SAT, EAM}
and define packages
2 7‘6
Pty = Lo (xt rr}:l,é(‘n)

and

Pxpp = ZLypp\ (psk} (Xpd,) ® ® xpdpgy ¢
lte{xeNlx<d}

for package code, see Figure 5.1a and Figure 5.1b. We are using function names here,
but they are defined as

SET, ¢ ::= FnNumber, ¢ o,
GET, ¢ ::= FnNumber, ¢ |,

and

HASH < offset.

5.4. DETAILS OF THE SECURITY PROOF FOR TLS 1.3 KEY SCHEDULERO03

Xpdn’[xtrz ‘

Imports : Imports :

GET,, ¢ for n; =m (PrntN,) GET,, ¢ for n; = m (PrntN,)
SET, s for ¢ ={+ (n=PSK) GET,, for ny=m, (PrntN,)
HASH SET,

Exports: Exports:

XPD, ¢(hy,r,args) XTRy ¢ (h1,h2)

(n1 7I’lz) <+ PrntN,
h <+ xtr(n,hl 7/’12>
(kl,honl) — getnl_[(hl)

(ny,_) < PrntN,
label <— Labels, ,
h < xpd(n,label, hy,args)

(ki,hon) < get, (k2, hony) < get,, ((h2)
h + if n = PSK k < xtr(ki, k)
k < xpd(ky, (label,args)) hon < ret (hon, || hony)
sety s41(h, hon,k) k< if b || hon2
else k" €r Zikn)
digest < 3 (args) ret tag(alg k,k")
k < xpd(ki, (label digest)) else
set, ¢(h,hon,k) retk
fi fi
reth h < set, ¢(h,hon,k)
reth
(a) xpd package
(b) xtr package

Figure 5.1: xtr and xpd package definitions

Next we build hierarchies for the key stores. We assume there exists a lookup
table for all keys and for all logging. We define functions for applying different
functions based on if a key exists. We also assume a decision function J,4*, _ exists,
which checks if any 4#* fulfills the functions without failure. For the logging and key
code, see Figure 5.2a and Figure 5.2b. We define the hierarchies of these packages as

Ps, o= QLo fo(m)

nes
. .
Pl = gs(xﬁgn N.

Before we can define the core game, we are only missing the definition of check, ¢,
which can be found in Figure 5.3. The set separation_points contains elements
such that any path from PSK to an output key contains an element in separation_points.
The same goes for any path from ML-KEM. This ensures a separation between the
initial keys and the output keys. Furthermore, the set early represents keys not

104

influenced by ML-KEM. For the proof of the core theorem for Bert13, these checks
can be ignored, as we do not use binders.
we will start by giving a generalized definition, which can be used for some of the
intermediate steps in the proof of the core theorem. The generalized core package

CHAPTER 5. BERTIE

Ln.,P

Exports:
UNQ,, (1, hon, k)

if 3, 1",

(W ,hon' k) < get?(TABLE.[h"])

then

r <+ level(h)

¥« level(h*)

match P with

| Z=ret tt

| A=if hon # hon' && r
then fail

| F = fail

| D= if hon # hon' then fail

| R=if hon # hon'
then fail
else fail,,;,
fi
set_atraprg, 4(h, hon,k)
ret h

#r

(a) Log package

b
Kn,ﬁ
Imports :
UNQ,

Exports:
SET,, ¢ (h, hon,k*)

get_fn(TABLEk|[h])
| FATL =
k + ret (untag(k*))
k < if b && hon
X €R Zign
retx
else
retk
fi
unq(h, hon, k)
set_at(TABLEk[A])(k,hon)
reth
| SUCCESS _ =
reth

GET, ¢ (h)

(k*,hon) + get_fail(TABLEk[A])

| FAIL = fail
k < ret (tag(m (mh), mk*))
ret (k,hon)

(b) Key package

Figure 5.2: Log and key store package definitions

construction is

We can now define the core game, but

Gcore—package—construction (fb,xtra fb,Ka fP,Lv bHash) S

((Zxer(checky, o) © Zxtr(IDpr) ® Lo+ (IDyy)) © (Lo (IDy) @ Prpp ®

® (Gml-kem @ IDpsk 0)
® ((}}fl}?N oP kn,(2_z)) @ (

Kﬁ”K (PSK,d+1)

PSK,d+1

© LPSK,(/l_,Z)))

5.4. DETAILS OF THE SECURITY PROOF FOR TLS 1.3 KEY SCHEDULERO05

checky;

Exports:

XPD,, ¢(h1,r,args)

if n = BIND
if r = false then assert(level(s;) = 0) else ret tt
if r = true then assert(level(h;) > 0) else ret tt

else
if n € separation_pointsnearly
binder <+~ BINDERARGS (args)
hpnar < BINDERHAND (A1, args)
(k,_) < getprnper ¢ (hbnar)
assert(binder = k)
else
if n € separation_points
(X,Y) <+ MLKEMARGS (args)
Il -kem ¢ MLKEMHAND (/)
assert (/i1 -kem = ml-kem((sort(X,Y))))
binder <+~ BINDERARGS (args)
hpnar < BINDERHAND (hy,args)
(k,_) < getprvper ¢ (Monar)
assert(binder = k)
else
ret tt
fi
fi
h < xpd(hy,r,args)
reth

Figure 5.3: Check package

® HashP#es
The core game of the key schedule is then defined as
Gﬁore L= Gcore—package—construction((}L_vb)7 (A_v b)7 (l_az)a b)‘

For a graphical overview of the core package, see [20, Figure. 11]. For a proof
overview, see [20, Figure. 31]. We will use A" to represent constant functions
returning v. We can then specify the intermediate steps by

e . false false 77
Gcore-hash ::= Gcore—package—constructlon(l A A 7true)

106

Gcore—D .

i PEgart -
Gcore—RESalt .
fb,Hs :

Gcore-So-KEM 5i=
N* p—

fo.Ne 0

Gcore ~hyb,¢ *

fb,N*,Z,C :

Gcore—hyb—pred,é ¢

Gcore—kl

= An, ((n€N*) || (n = PSK

CHAPTER 5. BERTIE

e false 4 false 7D
= Gcore—package—construction(k A A7, true)

= An, {R " = Esate

D o.w.

e false false
= Gcore—package—construction (k s A y fP,Esalt , true)

true n=HS
= An, {

false o.w.

Gcore—package—construction (fb7HS 3 Afalse) fP,Esalt) true)
[ES,EEM, CET, BIND, BINDER, HS, SHT, CHT,

Hsa1t,AS,RM, CAT, SAT, EAM, Osare, Esart, Orxu]

nm=An, (n€N")| (n=PSK)) && (i <¥)

— Gcore package- constructlon(fb HSafb N* ZafPEsalt s true)
) && —(i+ (n € C) < ¢)
(fous, fo.N* 0.0 fPEm. > tTUC)
(

true 3D
= Gcore package-construction fb HS;A)L true)

= Gcore package-construction

Now the proof of the core theorem is a sequence of equivalences in order of the
above definitions; see [20, Appendix. D] in general and page 72 in specific. We first
introduce a couple lemmas (without proof):

%(GcoreaA) < JZ{(Gacr(fhash)aAoRcr) + (5.1)
M(Gcore—hashyGéormA)
%(Gcore—hashchore—mA) S %(Gacr(fxtr)yA oRZ fxtr) + (5~2)

vQ{(acr(fxpd) AORZ fxpd)
(acr(fxtr) AoRp fxtr)
(Gacr(fxpd) A ORD fxpd)
(

%(Gcore—Rgsalth};orey) < maXﬂ{ Geore-n, Core,A) (5.3)
rQ{(Gcore—REsalt P Gcore—SO—KEPhA) = %(Gcore—SO—KEmAi ORso—kem) (5~4)
JZ{((;COI'Q—kiaGg:(:.rea) < ‘Q{([salt} R?A'oRpi,[Esalt}) + (55)

A (GpigrrAi ©Rpip+),

and the equivalence for D — R

ﬂ(Gcore—Da Gcore—RESalt >A) =0. (5.6)

The Proof of the Important Lemma

First we compute the order in which we idealize the named key stores for each round
(see Figure 4 in the paper above). The order is computed by maintaining a set of
key names and then, in each round, adding any names for keys that could be produced

5.4. DETAILS OF THE SECURITY PROOF FOR TLS 1.3 KEY SCHEDULERO(7

with information from previous rounds. This makes it so that the set is monotonically
increasing over the number of rounds. We start from the keys PSK, Oga1t, KEM, Orxy
and continue the process until the set contains all the names of the keys, i.e., at most
|KN|. To simplify the proof, we precompute the set of each round for the TLS 1.3
keys. Written as a list of additions, it computes to

[[PSK, Oga1+, ML-KEM, Orgy],

sl,

[

[

[EEM, CET,BIND, Egait),
[BINDER],
[
[
[
[

F'J

'.I:

sl,

SHT, CHT, Hea1¢),
As],
RM, CAT, SAT, EAM]].
This aligns well with communication rounds of TLS 1.3, as it encapsulates what

we can do before needing more information. We will use Ord;y; to refer to the full
accumulated list of the idealization order. This is reflected by the lemma

Vij, i< j= (j<|Ordyl|) = Vx, x € Ord;g[i] = x € Ord;q[J]

Next we introduce some lemmas (without proof):

((c=0) || (PSK ¢ Ordigi[c —1])) (5.7)
= PSK € Ord,y; [C]
= C = Ordy [C] ANC' = Ordyy, [C—I— 1]

A %(Gcore—hyb—pred,é,& Gcore—hyb—pred.[.,C’aA) < e52{(Gx‘cr,ES,EyA Othr,ES,E)

((c=0) || (Esart & Ordigi[c —1])) (5.8)
= Esa1t € Ord,-dl [C]
= C =O0rdy [C] ANC = Ord;y [C + 1]

A %(Gcore—hyb—pred,é,a Gcore—hyb—pred,[,C’aA) < d(Gxtr,HSjaA Othr,Hsj)

((c=0) || (Hsa1t & Ordjarc —1])) (5.9
= Hga1t € Ordiyy [C]
= C =O0rdyy [C] NC' = Ord;y [C+ 1]

A %(Gcore—hyb—pred,é,& Gcore—hyb—pred,Z,C’aA) < 'Q{(Gxtr,AS,ZyA Othr,AS,E)

ChldrOp(m (PrntN n)) = xpdOp (5.10)
= n € XPD

108 CHAPTER 5. BERTIE

= 1 (PrntN n) ¢ Ord;g[c — 1]

= ((c=0) || (m (PrntN n) € Ordig[c +1]))

= C = Ordig)[c] NC' = Ord;gi[c +1]

N & (Geore-hyb-pred,t,Cs Geore-hyb-pred,(,c'sA) < & (Gxpan e+ A 0 Rypan,)-

Now we can state and prove the important lemma, a hybridization argument, which
states

7 (Geore-hyb,t, Geore-hyb (+1,A) (5.11)
< o (Gxtr s, A0 ReerEsy) +
o (Gytr s (A0 Ryerpse) +
o (Gytrps,0,A 0 Rytrase) +
Z JZ{(pran,AA ORxpd,n.,Z))-

neXPD
We apply the triangle inequality to setup for the hybridization argument
ejZ{(Gcore—hyb,fa Gcore—hyb,£+l 7A)

A
< th{<Gcore—hyb7éa Gcore—hyb—predL[]7A) +

'%/(Gcore—hyb—pred‘/‘: B Gcorefhyb‘/+l A)

Then we argue that the first part disappears because

%(Gcore—hyb,éa Gcore—hyb—pred,é‘,[]7A) =0.

To show this, we unfold the definitions,

«Q{(Gcore—hyb,& Gcore—hyb—precL&[]>A)
= v‘Z{(Gcore—package—construction (fb,HS) fb,N* s fP,Esalt) true))
Gcore—hyb—pred,é,[] 7A)
= JZ{(Gcore—package—construction (be-IS y fb,N*,£7 fP,Esalt) true))

Gcore—package—construction (fb7HS) fb,N*L[I fP,Esalt) true)) A) .

It is obvious that fj, y+« 4[] = fp.n+ ¢, thus,

= JZ{(Gcore—package—construction (fb,HS) fb,N*,éa fEEsalt) true))

Gcore—package—construction (fb,HS) fb,N*,€7 fREsan ’ true) ’ A)
=0.

We also step closer to the hybridization argument from the other side by again using
the triangle inequality

'@/(Gcore—hyb—predk[| Gcore—hybA{'Jr 15 A)

5.4. DETAILS OF THE SECURITY PROOF FOR TLS 1.3 KEY SCHEDULER09

A
< ‘Q{(Gcore—hyb—pred,f,[]7Gcore—hyb—pred,é,Ord;d,[\Ord,vd[|71] -/A) +

'V/(Gcorefhybfpred.l.()rz/[d/H()rd“//\ l]-,Gcorefhybf : l-,A)-
Again we argue that

7

'(/(Gcorefhybfpred,l,()rzl“,,H()n/,‘{,,\—I]s(Jcore—hybﬂrl ,-A) =0.

We unfold the definitions to get

1(7//(Gcorefhybfpred.(.()r(l“//{ Ord;g|—1]> Gcore-hyb,(+1 7A)
= & (Gcore-hyb-pred,(,0rd;[|Ordia| 1]
Gcore—package—construction (fb7HS) fb,N* L4 7fP,Esa1t s true) 7A)
= JZ{(Gcore—package—construction (fb,HS s fb,N* ,0,0rd;q[|Ordigy|—1] 7fREsa1t) true),

Gcore—package—construction (fh,HS) fb,N* A P fP,Esalt , true) aA) .

It is, again, obvious that

Jo.N* 0,0rdi | Ordigr| —1] = Jo.N* 041

as Ordidl[|0rdidl| — 1] = KN, thus,

JZ{(Gcore—package—construction (fb,HS s fb,N* L4155 fP,Esalt) true) ,

Gcore—package—construction (fb,HS s fb,N*,ZJrl s fP,Esalt s true) 7A) =0.

Now we can finally do the hybridization argument

’Q{(Gcore—hyb—pred,(,[I Gcore—hyb—predi,&Ord,-d/ [|Ordigi|—1] aA)
|Ordigr|—1
< . 'Q{(Gcore—hyb—pred,Z,Ordid, BE Gcore—hyb—pred,E,Ord,-d[[e+1] 7A)
P
as an induction proof over the size of Ord,;;. For the base case of length O we have a
trivial equivalence. For the inductive case where n = |Ord;y| — 1, we can apply the
triangle inequality

JZ{(Gcore—hyb—pred,ﬂ,[E Gcore—hyb—pred,f,Ord,-dl [n+1] 7A)
A
< JZ{(Gcore—hyb—pred,ﬂ,[]aGcore—hyb—pred,é,Ordid, [n] ,A) +

d(Gcore—hyb—pred,ﬁ.,Ord,-d, [n]> Gcore—hyb—pred,K,Ord,-d, [n+1] 7A))

and we apply the induction hypothesis to get

n

Z 0(2{(Gcore—hyb—pred,é,Ord,-dl [e]» Gcore—hyb—pred,Z,Ord,»dI [e+1] 7A) +
c=0

eKM(Gcore—hyb—pred,f,Ord,-g” [n]» Gcore—hyb—pred,ﬁ,Ordidl [n+1] 7A)

110 CHAPTER 5. BERTIE

n+1

< Z 'Q/(Gcore—hyb—pred,E,Ord,-d,[c]aGcore—hyb—pred,é,Ordidl[c+1]aA)'
c=0

Unfolding the full sum, we can split everything into cases given by Equations (5.7)
to (5.10). There are three cases for xtr (i.e., ES, HS, and AS) where Equations (5.7)
to (5.9) apply; the rest falls into xpd where Equation (5.10) applies. The sum thereby
becomes

M(Gxtr,ES,(aA Othr.,Es,e‘) +
JZ7(Gxtr,HS,£aA Othr,Hs,é‘) +
o (Gxtras,0,A O Rytr as,0) +
Z 2 (Gxpan,tA 0 Rypant),

neXPD

concluding the proof of Equation (5.11). This is used in combination with
o (Geore-50-keM; GeoresAi) < (Geore-kis GroresAi) + (5.12)

d
Z Jy(Gcore—hyb,fa Gcore—hyb,Z—H aAi)~
(=0

The Proof of the Core Theorem

We now have all the prerequisites to prove the core theorem proof without any further
interruptions. It proceeds by a stepping the inequality using the lemmas, or splitting it
into parts, which can be shown independently. We start with

%(Gcorea) S ﬂ(acr(fhavh) AORcr) "‘M(Gcore haShaGcoreaA)

(5.2),A
< %(acr(fhash)vAoRcr) +

('QZ(acr(fxtr) AoRz fxtr)
A (Gaer(fepa) Ao Rz frpa) +
A (Gaer(fur),AoRp fur) +
A (Gaer(fpd),A°RD frpa)) +
(

% Gcore D> coreaA)

Focusing on the last term, we get the inequality

v‘Z{(Gcore—DaGcorea) < 52{(core—DaGcore—RE alt 7A) +~Q7(Gcore—REsaltaG£orevA)

S O"‘%(Gcore RE 1t7Giore’)

1
S Jy(Gcore—RESalt) Gcore’A)

(53) |
< max & (Geore-p: Geore, Ai)-

T

5.4. DETAILS OF THE SECURITY PROOF FOR TLS 1.3 KEY SCHEDULER11

Next we can look at each case of i; thus, we get
1
M/(Gcore—D: GcoreaAi)

A

S «Q{(Gcore—Da Gcore—SO—KEl"bAi) "‘JZ{(Gcore—SO—KEMa G};ore7Ai)
A

S JZ{(Gcore—Da Gcore—REsalt 7Ai) +

JZf(Gcore—REsalt) Gcore—SO—KEMyAi)) +

Jy(Gcore—SO—KEl"Ia Gcl:oreaAi)

5.4)
S '%(GCOI‘E*Dﬁ GCOFE*REsalt sAi) +

d(GCOI‘e—SO—KEMaAi ORsofkem) +
»‘O/(Gcore—SO—KEMs Gcljore) Al) .

Again, we focus on first and last terms, which gives us the following inequality

‘@/(GCOrE*Da GcorefRESalt 7Ai) + ’Qf‘/(GCOre*SO*KEM:\ G(I;ore 7Af)

(5.12)
S 'Q{(GCOI‘G—Da Gcore—REsalt 7Ai) +

%(Gcore—kia GioreaAi) +

Z %(Gcore—hybja Gcore—hyb,Z-H ,A,‘)
0<(<d

Gy
< M/(Gcore—Ds GCOI‘E’REsalt"

JZ{(Gcore—kia G:;orevAi) +

Z (%(Gxtr,ES,%Ai Othr,ES,Z) +
0<(<d

d(Gxtr,HS,Z)Ai Othr,HS,Z) +
M(Gxtr,AS,Z)Ai Othr,AS,Z) +
Z JZ{((;xpd,n,bAi ORxpd,n,Z))-

neXpPD

Ai)+

We can apply Equation (5.5) to get

A (Geore-kis Grore:Ai) < A (G) Ry Ai O Ry 210)) + @ (Gpio 8,Ai © Rpior)
and Equation (5.6) for
A;)=0.

tV/(Gcore—D) Gcore—RE

5
salt ’

Thus, reducing the inequality to

‘Q%(GCOI'Q—Da Gcore—RESalt :Ai) + 19%(GC0I‘6—SO—KEM7 Gcl;oreaAi)
< A (Gpi[Eanre) RrAI O RpiE0e)) +F (Gpior RyAi 0 Rpior) +

112 CHAPTER 5. BERTIE

Z (M(Gxtr,ES,éaAi Othr,ES,E) +
0<(<d

%(Gxtr,HS,ZaAi Othr,HS.[) +
M(Gxtr,AS/»Ai othrAS,Z) +
Z M(prd,n,faAi ORxpd,n,é))~

neXpPD

Combining the parts, we get a final security bound of

A (GeorerA) < & (Gacr(frash)s A0 Rer frash) +
W(Gacr(fxtr)aA oRz fxtr) + JZ7(Gacr(fxpa’)aA oRz fxpd) +
JZZ(Gacr(fxtr)aA oRp fxtr) + JZf(Gacr(fxpd)aA oRp fxpd) +
m?X(W(Gcore-SO—KEM,Ai ©Rso—kem) +

A (Gpi [Byar] R A O Rpi [B,01]) T (Gpi.or Ry Ai © Rpi o)

Z (%(Gxtr,ES,bAi Othr,ESI) +
0<(<d

JZ{(Gxtr,HS,vai © thr,HSI) +
M(Gxtr,ASﬁ;Ai © thr,AS[) +
Z fQ{(prd,n,vai ORXpd,n,E)):

neXPD

concluding the proof of the core theorem.

Instantiating the Proof

We have a (partial) proof that a TLS-like key scheduler is secure. To apply this proof,
we implement such a protocol and show that it fulfills all the initial requirements.
That is all the data structures used in the implementation maps to the one used in the
proof. Furthermore, the implementation needs to have at least the required set of keys.
Given this, we show the initial package and functions (xtr, xpd, prntN, label) can
be instantiated using the implementation.

Chapter 6

CryptoConCert: A Framework for
Secure Rust Smart Contract
Verification, with an Application to
Voting

First we introduce the Schnorr (§6.2) and CDS (§6.3) zero-knowledge proofs used in
the CryptoConCert paper in full detail. Then we present the paper, followed by an
alternative (paper) proof for maximum ballot secrecy. We give both a general outline
of the proof and a technical description of the proof. Finally, we describe the possible
improvements and modifications that can be made to the implementation of the open
vote network protocol.

6.1 Properties of X-protocols

We will give a general description of the cryptographic constructions used in Subsec-
tion 2.4 of the paper. This will serve as an introduction to the structure and properties
of X-protocols [36]. We then apply it in the two following sections for the Schnorr
and CDS protocols.

To define a X-protocol, we first state the zero-knowledge proof statement we want
to show and the witness that exhibits it. Next we define the protocol by describing
the procedure for the committer and the validator. To follow the X-protocol template,
we define the protocol based on the three messages (initial message, challenge, and
response). The committer tries to convince the validator that the statement is true
using their knowledge of the witness. Correctness can be checked by showing the
validators’ checks after the response never fails if the protocol is followed.

We show the conversation is secure by defining a simulator, which needs to
produce a valid transcript having the same distribution. The simulator is only given
the public input and a random challenge. Showing the existence of a simulator ensures

115

116 CHAPTER 6. CRYPTOCONCERT

that any conversation is refutable, since an actual conversation and a simulated one
cannot be distinguished; thus, no information should be gained from seeing the
transcript.

Finally, we define a witness extractor, which, given two different challenge and
response pairs for the same initial message, produces a witness of the statement. The
extractor shows that anyone who can convince the validator must know have know!-
edge of the witness, as being able to produce a response to two different challenges is
enough to extract the witness.

6.2 The Schnorr Protocol

The goal with the Schnorr protocol [84] is to show we know the private key m for a
public key A, without leaking any extra information about the private key. Thus the
zero-knowledge (ZK) proof statement is

h=g",

where m is a witness of the statement.

Correctness of the Committer and the Validator

The definitions of the committer and validator for the Schnorr protocol are in Fig-
ure 6.1. We check correctness by ensuring the final check is valid if both parties

Committer(g,h,m) Validator(g, /)
r €r Zq
u+—g"
u
C €ER Zq
c
z<c-m+r
z
)
g&=h"u

Figure 6.1: The Schnorr protocol committer and validator

adhere to the protocol

6.2. THE SCHNORR PROTOCOL 117

The Simulator and Special Honest Verifier Zero-Knowledge (SHVZK)

The simulator for the Schnorr protocol needs to produce a transcript (u,c,z) given
public input / and the random challenge c. The simulator is defined in Figure 6.2. We

Simulator (%, c)

ZGRZq
gZ
M(—ﬁ

ret (u,c,z2)

Figure 6.2: The Schnorr protocol simulator
check that all the definitions from the prover are equal to those given by the simulator

gZ
hc~u:hc-ﬁ
:gz_

We also need to ensure that the checks still hold

The Extractor and Special Soundness

The extractor should find a witness to the ZK statement given the two transcripts,
with the same initial message but different challenges and responses, e.g., (#,c,z)
and (u,c’,7'). We define the extractor in Figure 6.3. The extractor computes a valid

Extractor((c,z),(c’,7'))

/

m <—

c—c
retm

Figure 6.3: The Schnorr protocol extractor

witness as

=7 (m-c+r)—(m-c'+7)

118 CHAPTER 6. CRYPTOCONCERT

since ¢ # ¢’ we get
=m.

This concludes the proof of special soundness.

6.3 The Cramer-Damard-Shoenmaker (CDS) Construction

The OR proof, also known as the Cramer, Damgard, Schoenmakers (CDS) con-
struction [33] or a specialized case of Disjunctive Chaum-Pedersen (DCP) [23], is a
zero-knowledge (ZK) protocol. The idea is to show a value y is encoding v which is
either a 0 or a 1, without leaking which. The ZK statement is

x=g" AN y=h"-g" AN ve{0,1},

where a witness of the statement is (m,v). To define the X-protocol and show zero-
knowledge, we need to define a committer, validator, and extractor, for which we need
to show correctness, special honest verifier zero-knowledge, and special soundness.

Correctness of the Committer and the Validator

The committer will generate a pair of values, one based on the real values, and the
other sampled at random. To determine which part of the pair uses the real values
and which uses the sampled once, we look at the value of v. The X-protocol can be
seen in Figure 6.4. To prove the correctness of the protocol, each check at the end of
the protocol needs to be proven to succeed, given the protocol is followed honestly.
Checking c =d; +d, whenv =1

d1+d2:d1+(0—d1) =c
and whenv =20
di+dy=(c—dr))+dr=c

follows directly from the definitions. The check g™ - x?1 = g, is true by definition for
v =1, so we compute for v = 0 as follows

gr] ‘xd| — gr1 gmd]

__ _rit+md;
=8

=8
:gW
=dai.

w—m-dy+m-d;

Conversely, g" - x2 = a, is true for v = 0 by definition, and the computation for v = 1
is similar to the above

grz 'Xdz — grz _gm-dz

6.3. THE CRAMER-DAMARD-SHOENMAKER (CDS) CONSTRUCTION 119

Committer(g,/,v,m) Validator(g, /)
v=1 v=0
W7r17d1 ERZq W7r27d2 6RZq
x+g" x+g"
y«h"-g y<+« W
ay g -xh ap +g"
b1 «— W ~yd1 bl «—h"
ar « g" ay g - x®

»\“
b2 —h" bz —h'. ()

8

(x,y,a1,b1,a2,b)

CERZy
c
d2<—cfd1 d1<—cfd2
ré&—w—m-d r —w—m-d
(r1,dy,r2,d2)
cLdi+d
a ;g” v
by L0y
a =g x®

9 y &
by=h"- ()
8

Figure 6.4: Definition of committer and validator

120 CHAPTER 6. CRYPTOCONCERT

_ yhtdym
=8
— w—m-dy+m-d;

w

=a.
The check h™ -y = by again follows by definition for v = 0, so we check v = 1 by
hr] yd| — hr1 . hm-d|
— hr1+WI'd1
— hw—m‘d1+m-d1
— R
=by.

d
Finally, we check A2 - (g) = b>, which breaks the symmetry a bit but is still true by
definition for v = 1. Checking for v = 0 by

n . (y>d2 —h. (l’m'g>d2
8 8

=n2. (hm>d2
= K2 gk

— prtmd

— p—m-datmedy
="

=b;.

Thus, all the checks are correct for both values of v.

The Simulator and Special Honest Verifier Zero-Knowledge (SHVZK)

The goal of the simulator is to produce a transcript of the protocol without interacting
with the prover. The transcript still needs to have the correct distribution. For CDS
the simulator has to produce

((x,¥), (a1,b1,a2,b2),c,(r1,dy,r2,d2))

given (x,y) and c. This is achieved by the procedure in Figure 6.5. We need to check
the correctness of the generated protocol. That is, we need to check the definitions are
equal to once defined by a prover. We are given (a;,b;,az,b;), and define

d=c—d

and
rn=w—m-dp

6.3. THE CRAMER-DAMARD-SHOENMAKER (CDS) CONSTRUCTION 121

Simulator(g, A, (x,y),¢)

d27r17r2 ER Zq
d] (—Cfdz
aj g -xh
by« W'y

ap <+ g7 . x

d
by I - <y)
8

ret ((X,y),(al,bl,az,bz),c,(rl,dl,rz,dg))

Figure 6.5: CDS simulator

when v = 1, and for v = 0 we define
di=c—dp

and
rr=w—m-d.

The correctness argument for the validator, for the v =1 case, is

c—di=c—(c—dy)

and

W—m‘dg: (r2+m~d2)—m‘d2

=Tnn.

For v = 0, the value of d; is defined exactly as the prover does; furthermore, the check
for ry is correct by

w—m-dy=w—m-(c—dy)
=(ri+m-(c—dy))—m-(c—dy)

=r.
Thus, all the simulated definitions have equal distributions.

The Extractor and Special Soundness

In a X-protocol, the extractor is given two transcripts with the same initial message

(X,y), (a17b17a27b2)

122 CHAPTER 6. CRYPTOCONCERT

Extractor((ry,dy,r2,d2),c,(r},dy,rh,d}),c)
v (dy = d))
if v=0
r—r
m d: —
else
m < o
d,—d}
ret (m,v)

Figure 6.6: CDS extractor

but two different challenges,
(ri,di,r2,d2),c

and
! gl /
(1’1, lvrlvdz)vc'

It then needs to extract a valid witness for the statement. We do this by the checks in
Figure 6.6. If both runs validate and the challenges are different

c#c
c=di+d d=d|+d, (6.1)
ay=g"-xh a = gr/' x4 (6.2)
by =h"-yh by =h" -y (6.3)
ay =g -x® a =g x® (6.4)
y dy , y dy
by = h'. () by = h'2. <> , (65)
8 8

then we need to find a witness for the statement of the protocol
x=g" AN y=h"-g" AN ve{0,1}.

We can conclude (dy # d}) V (dy # d}) from ¢ # ¢’. We insert the definitions into the
statement to get

(| -r1) 1 =r1)

U /
x=g W A y=ha o (d #£dY)

(ry=r) (ry=r3)

= g(dz—dé) A y= J (d2-d)) g (do# dé)

. (6.6)

6.4. THE PAPER 123

We know v is a Boolean,; it is either O or 1. We can therefore remove the last condition
of the ZK statement. We equate the two different definitions of Equations (6.2) to (6.5)
by

c#c
gr’l —n — xd] 7di
hr’l —n — yd] 7di

gr’2 -r _)Cd2 —d)

dr—d}
B — <y> o
g

We then plug these definitions into Equation (6.6) to get

(d—d}) (dy—d})
! !
x:x(dlidl) /\ y:y(dlfdl) (dl #di)
(dy~d}) (dy—dh))

X = x(dz—dé) A y= (g) (dy—dh) g (d2 7& dé)

which simplifies into

xX=x A y=y (di #dY)
y=(§)~g (a2 #dy)

>

X=X

Thus, we have shown that the extractor of Figure 6.6 correctly extracts the witness!

6.4 The Paper

The paper “CryptoConCert: A Framework for Secure Rust Smart Contract Verification,
with an Application to Voting” collects the work on formalizing the OVN smart
contract. It is currently under submission; thus, the deanonymized version of the paper
follows in full. A summary of the paper is made in §6.5 for convenience.

CryptoConCert: A Framework for Secure Rust Smart
Contract Verification, with an Application to Voting

LASSE LETAGER HANSEN, Aarhus University , Denmark
ESKE HOY NIELSEN, Aarhus University , Denmark
NIKOLAJ SIDORENCO

BAS SPITTERS, Aarhus University , Denmark

Smart contracts carry large amounts of monetary value, are immutable, but of surveyable size. They thus form
a welcome target for formal verification. However, until now, the cryptographic aspects of smart contracts
have not been formally scrutinized. In this work, we describe a general framework for formally verifying
the cryptographic security and (trace-based) correctness of smart contracts. We apply program verification
techniques to prove security by using the SSProve library in Rocq, which provides a probabilistic relational
program logic built on Dijkstra monads. We use Rust as a smart contract language to produce WebAssembly
(Wasm), as this combination is gaining traction in the blockchain space. We use the Hax toolchain to embed
our Rust smart contract into Rocq. For added assurance, we use ConCert/CertiRocq-Wasm to compile this in a
verified way to Wasm, which can be run on chain. As a case study, we will apply this to a voting protocol
based on homomorphic encryption. Specifically, we analyze the Open Vote Network (OVN) smart contract in
a safe subset of Rust and extract it in a verified way to on-chain Wasm.

ACM Reference Format:

Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters. 2026. CryptoConCert: A
Framework for Secure Rust Smart Contract Verification, with an Application to Voting. In Proceedings of
Principles of Programming Languages (POPL’26). ACM, New York, NY, USA, 24 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

Due to its critical place in society, cryptographic software has been a popular application area
for formal methods. This includes the internet stack, voting software, payments, and blockchain
systems; see [6] for an overview. The Everest project [66], which aims to verify HTTPS, is one of
the highlights in the field of high-assurance cryptographic software (HACS). HACS started with
the verification of primitives and abstract protocols. For primitives one verifies the functional cor-
rectness of highly optimized implementations. One proves the security properties of primitives and
simple protocols in the computational model. This is usually treated by reasoning in a probabilistic
Hoare logic, most prominently in EasyCrypt [7]. For larger protocols, one tends to use the symbolic
(‘Dolev-Yao’) model, where one assumes perfect behavior of cryptographic primitives. The symbolic
model lends itself well to automatic verification. More recently, the emphasis is shifting to the
modular verification of realistic implementations of bigger protocols. The verification [16] of a Rust
implementation of TLS 1.3 is one example of this.

Authors’ addresses: Lasse Letager Hansen Aarhus University, Denmark, letager@cs.au.dk; Eske Hoy Nielsen Aarhus
University, Denmark, eske@cs.au.dk; Nikolaj Sidorenco; Bas Spitters, spitters@cs.au.dk Aarhus University, Denmark.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

POPL 26, 11-17th of January, Rennes, France

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: January 2026.

HTTPS://ORCID.ORG/0000-0003-3271-3593
HTTPS://ORCID.ORG/0000-0001-6735-6843
HTTPS://ORCID.ORG/0000-0002-5092-2172
HTTPS://ORCID.ORG/0000-0002-2802-0973
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0003-3271-3593
https://orcid.org/0000-0001-6735-6843
https://orcid.org/0000-0002-5092-2172
https://orcid.org/0000-0002-2802-0973
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters

Smart contracts are a similar attractive topic for formal verification. They are an important
part of the decentralized economy, which is currently valued at several trillions. Moreover, the
decentralized economy is closely intertwined with the traditional economy. However, bugs in
smart contracts have been exploited for hundreds of millions!. Smart contracts are immutable, so
vulnerabilities need to be caught before deployment. Fortunately, one can use the cryptographer’s
view of a blockchain as a secure append-only log to treat smart contracts as regular programs
appending to this log. With this view, smart contracts are moderate in size. This combination
of factors makes them an ideal target for formal verification. Some initial steps in this direction
have been taken; see Subsection 8.4. Most of these are automated methods for simple properties.
Some more complex correctness properties, such as trace properties, have been proved using
interactive theorem proving. For example, the total number of coins in a decentralized exchange
stays constant when trading [58]. However, important smart contracts also include cryptographic
aspects implemented in smart contracts. Merkle trees or zero-knowledge-based contracts, such
as the layer-2 contracts, which address the performance issues of (layer-1) blockchains, are an
example of this. Another example is on-chain voting, used for minor elections such as boardroom
voting or communal elections; see Subsection 8.1.

To verify properties of cryptographic smart contracts, one needs to combine probabilistic rea-
soning from HACS with trace-based smart contract verification. To do so, we contribute a general
framework, CryptoConCert, to reason about such cryptographic smart contracts. Our approach is
similar to the one for the verification of cryptographic protocols, where one proves the security of
primitives in the (probabilistic) computational model, and then proves the security of the protocol
in the (trace based) symbolic model. Usually, these two models are not formally connected, and both
are treated with dedicated tools. Hax provides a way to make sure they work from the same Rust
code [16]. ConCert is more precise than the symbolic verifiers for cryptography, in that it verifies
concrete implementations. So, we improve on the state of the art in cryptographic verification,
by formally proving that the code in our probabilistic model is equivalent to the one in the trace
model.

To evaluate CryptoConCert, we consider a specific voting contract, the Open Vote Network
(OVN) protocol [43], as a case study. This is an application of blockchains to voting. More generally,
the topics of voting and blockchains are intertwined: secure voting is used for internal mechanisms
of the blockchain, such as for consensus, governance, and decentralized autonomous organizations.

Blockchains generally come in two flavors: 1. account-based (like Ethereum), where each party
has a "bank account”; or 2. UTXO-based (like Bitcoin), where the blockchain records the transactions
between the parties. The two flavors are equivalent [19, 21]. CryptoConCert, like ConCert, works
for general account-based blockchains. Here, we instantiate it with the (Rust/Wasm)-combination
of smart contract languages, as this is gaining popularity; see Subsection 2.2. We do so by extending
the Hax Rust verification framework to smart contracts. As all Rust based blockchains have their
own glue code for smart contracts, we specialize this to the Concordium blockchain to ensure it
actually runs in practice.

Proving the security and correctness of smart contracts is important, but one also needs to
ensure that they are correctly compiled to on-chain code. For comparison, a number of critical
bugs have been found in Ethereum’s Solidity compiler. To avoid this in the future, the Solidity
compiler includes a built-in model checker, SMTChecker. The compiler has also been an active
subject for formal verification, but no fully verified compiler for Solidity exists; see Section 8.4.
Rust is a popular industry strength language which has been designed with clear PL-concepts

Thttps://go.chainalysis.com/2025- Crypto-Crime-Report.html

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://go.chainalysis.com/2025-Crypto-Crime-Report.html

CryptoConCert: A Framework for Secure Rust Smart Contract Verification 3

in mind. However, the full Rust language is still in the process of being specified? and a verified
compiler, like CompCert [53] for C, does not exist. So, for added certainty, we connect Hax with
CertiRocq-Wasm, thus providing a verified compiler-step that can replace the steps from (T)HIR to
MIR to LLVM to Wasm in the Rust compiler. The performance penalty for this is moderate; see
Section 7.

1.1 Contributions

In this work, we contribute a framework for the verification of the (probabilistic) security and
(trace-based) correctness of cryptographic smart contracts, focusing on the Rust/Wasm languages.
We do this by the following contributions:

o We extend the industry strength Hax [14] framework for Rust verification to support smart
contracts. This is by analogue to the use of Hax for protocol verifiers, but we provide a tighter
connection between the probabilistic aspects and the trace aspects; see Section 3.

e We provide the first smart contract to be formally proven cryptographically secure (see
Subsection 5.1), and we prove it to be correct (see section 6). This is also the first realistic
verified Rust smart contract. To prove the security of the implementation, we extend the
modular SSP-style for reasoning about cryptographic protocols to implementations.

o We evaluate this framework on an OVN Rust implementation, and provide a verified Wasm
implementation. In the process, we found an incompleteness in the security argument of the
OVN protocol and provide a mitigation; see Subsection 5.1.1.

1.2 Structure

Section 2 introduces relevant background material. Section 3 explains the general structure and
use of our framework, CryptoConCert. In Section 4, we introduce the Open Vote Network as a
case study of our framework. Section 5 and Section 6 prove security and correctness of our OVN
implementation. In Section 7, we evaluate the implementation of OVN. Finally, we discuss related
work on the verification of voting, smart contracts, Rust, and cryptography in Section 8.

2 BACKGROUND
2.1 ConCert

A challenge when working with permissionless blockchains is that the adversary is very strong since
it has complete knowledge of the system and full access to the network. In particular, an adversary
has access to the smart contracts code and state and can interact with any smart contract on the
network. Working with smart contracts is further complicated due to the complex execution model
in which smart contracts can call arbitrary smart contracts. For example, some smart contracts
make calls to other smart contracts based on user input, meaning that the code needs to handle
interactions with arbitrary code.

To verify correctness of smart contracts we use ConCert [4] which is a framework for developing,
testing, and verifying smart contracts in Rocq. An advantage of ConCert is that it models the full
execution model of the blockchain abstractly as a totally ordered broadcast, in the spirit of the
cryptographer’s ideal functionality. This means that it is possible to both reason about the functional
correctness of smart contract implementations and prove more complex properties about blockchain
traces and smart contract interactions. Furthermore, since the model is of an abstract blockchain,
it means that several blockchains can be targeted using the same smart contract implementation
without having to prove correctness of the contract for each blockchain individually. ConCert’s
model follows Ethereum’s account-based model. In this model, smart contracts are special addresses

2E.g. https://github.com/minirust/minirust

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://github.com/minirust/minirust

4 Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters

with an additional state and code. This code is executed when transactions are sent to the address
and the state is updated according to the computation. In ConCert smart contracts are modeled as
pure state transforming functions.

ConCert implements verified program extraction of smart contracts to several blockchain and
smart contract languages such as Rust and CameLIGO through MetaRocq’s typed erasure [3] and
Wasm through CertiRocq-Wasm [57].

2.2 Rust, Hax, and Wasm Smart Contracts

Rust is a type- and memory-safe imperative programming language that avoids the use of a
garbage collector by using a borrow checker to enforce an ownership model. Rust supports most
programming idioms with a zero-cost abstraction. Some design principles of Rust are memory
safety without garbage collection, and abstraction without overhead. Rust is very performant,
comparable with C. Our main interest in Rust is its popularity in security-critical applications and
its clear semantics for this application domain.

Traits in Rust provide ad hoc polymorphism, inspired by Haskell’s type classes. A trait is a
collection of functions and type definitions that can be generalized over some type parameters.
Similar to type classes, a type can instantiate a trait with an implementation, and functions can be
defined over any type implementing a trait.

2.2.1 Hax. Hax is a framework for writing cryptographic primitives, specifications, and protocols
in a subset of Rust, which we call Rustg,,. Hax translates Rust programs to programs that are more
amenable to verification. The translation happens in well-defined phases [14].

Rust is a popular language for writing cryptographic specifications (=reference implementations)
and implementations. For cryptographic reference implementations, only a limited fragment of
safe Rust is needed. It turns out that for efficient implementations of protocols, it is often enough to
write a reference implementation and replace the cryptographic primitives with highly optimized
implementations. Hax allows us to translate such reference implementations into a selection of
tools and backends (F*, Rocq, Lean, SSProve, ProVerif). Hax supports safe Rust (e.g. no raw pointers,
async, static) with partial support for mutable borrows, nested matching, and bounded iteration.

Each backend specifies a set of features it allows. Hax then runs a sequence of transformation
phases to reduce to the requested feature set. Finally, Hax can print the AST of the transformed
code to the syntax of (a DSL) in the backend.

For SSProve (see Subsection 2.4), there is a shallow embedding into its imperative language.
There is also a shallow functional embedding into Rocq with an equivalence proof to the imperative
embedding. This proof is built during translation and can be seen as translation validation or a
simple form of realizability. Language constructs like loops, early returns, let bindings, matching,
and if-statements are translated into the code monad of SSProve by using Rocq features (if, match,
fold, let) or by combining the code monad with another monad, such as the result monad [44].

2.2.2 Rustygy. The Hax framework is built to verify the Rustg,, subset of safe Rust. This subset
is designed for the verification of security-critical protocols. These typically have a straightforward
functional semantics, which can be embedded in proof assistants by shadowing lets. It supports basic
data types (bool, u8, ..., u128, string, float), structs, enums (and simple pattern matching), collections
(vectors and arrays), and traits. Hax only has limited support for some of the more advanced
features. It does not currently support mutual borrows as return types. Generic types, similar
to parametric polymorphism, are allowed in most types and definitions. The support for explicit
lifetimes is limited by the functional semantics. The lifetime annotations are not translated, since the
borrow checker is simple for Rustg,, and treated by Hax. Macros are supported by evaluation and
unfolding. However, they should be used with care, as this can clutter the embedding. Most control

, Vol. 1, No. 1, Article . Publication date: January 2026.

CryptoConCert: A Framework for Secure Rust Smart Contract Verification 5

flow structures are supported. The Hax frontend allows non-wellfounded recursive definitions and
unbounded iteration. However, some backends do not allow those general definitions. So, the user
will often be careful to avoid those.

The use of similar restricted subsets of Rust is common among analysis and verification tools;
see Subsection 8.2. The semantics, where present, for these tools agree on the Rustg,, subset, and
efforts are underway to fully specify the semantics of a larger subset of Rust.

Like other security critical protocols, most smart contracts can naturally be captured in Rustgy-.
Many smart contracts can naturally be written as pure programs transforming the (blockchain)
state. Often, they implement a state transition machine.

2.2.3 Wasm smart contracts. The Ethereum blockchain uses its own EVM virtual machine, and it
provides Solidity, a JavaScript-inspired language, to compile to it. A number of blockchains have
chosen Wasm as their virtual machine. These include Polkadot, NEAR, Cosmos, Solana, Dfinity,
Hyperledger, and Concordium. Wasm is also used in Ethereum’s sidechains/rollups.

We name a few motivations for the choice of Wasm as on-chain VM. It is a popular compilation
target for traditional programming languages. Wasm is very fast, which is important for blockchain
applications, as each computation needs to be carried out by all nodes. Moreover, Wasm is formally
specified, deterministic (if one removes floats), and has no undefined behavior. Wasm provides
memory safety, control flow integrity, and capability based isolation, as it does not provide e.g. disk
or network access.

Wasm does not have a garbage collector (GC). This gives predictable performance, which is
advantageous on-chain. So, Rust is a natural choice for a smart contract language, as it does not
have a GC, it has efficiency close to C, is popular with developers, and has an expressive type
system that helps one catch bugs early.

Aside, RISC-V has been proposed as a replacement for Ethereum’s EVM. This would make it
possible to use Rust as a smart contract language for Ethereum as well. Moreover, our verified
compilation with CertiRocq in Section 7, could easily be retargeted to RISC-V, as this is already
provided by the CompCert backend.

2.3 Cryptography

In Section 2.4, we will construct modular proofs of protocol security using reduction-style proofs.
In this section, we first introduce the cryptographic primitives, from which we construct the larger
procedures and protocols. The security and correctness proofs for the primitives follow from
standard cryptographic assumptions, which we will explain in the following subsections.

2.3.1 Commitment schemes. The first primitive we will look at is a commitment, where a party
commits to using a specific value for a computation. This primitive ensures that if the party
publishes their value used in the computation, one can check the commitment to ensure it is the
same value. Thus, a commitment scheme requires a function for obtaining a commitment to the
value, and a function for validating correctness of the commitment. The security properties are as
follows.

e Hiding: private inputs used are not leaked.

e Binding: After choosing a value, it cannot be changed.
Here, correctness entails that committing to a value will always validate correctly; binding forces
the value to stay consistent throughout the protocol; and hiding secures the value from being
disclosed before the party itself publishes it.

One could implement such a commitment scheme using a secure one-way hash function (e.g.

SHA-3). Validation of the commitment is done by checking if the published commitment is equal to
the hash of the published value. The correctness follows from the hash function being deterministic.

, Vol. 1, No. 1, Article . Publication date: January 2026.

6 Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters

Because the function used is a secure one-way hash, where collisions are hard to find, the binding
property follows, as we cannot choose another value with the same hash without breaking the
guarantees of the hash function [31, 34]. Finally, the hiding property follows from the hash function
being hard to invert [31, 34].

2.3.2 Zero-knowledge (ZK). The primary tool we use to ensure security in this protocol builds
on zero-knowledge (ZK) protocols [38]. These provide proof of a statement without leaking any
information. E.g. the Schnorr zero-knowledge protocol shows that the prover knows the value of
the private key without leaking any information. We use the ZK-protocols to bind the secret key
to the public key using the Schnorr protocol [63] and show the vote cast has the correct format
(either 0 or 1) using the Cramer-Damgérd-Schoenmakers (CDS) protocol [28]. For these protocols,
we want to show the security statement: the adversary learns nothing except that the statement is
true.

2.3.3 X-protocols. A Z-protocol [27] is a three-message (commit, response, verify) protocol between
two parties, a prover and a verifier, with the prover going first. The protocol guarantees that the
prover can make the verifier accept if the prover knows a witness to some relation for a common
input. An example relation could be proving knowledge of the secret key for some public key. Here,
the common input would be the public key, while the witness to the relation would be the secret
key. Thus, if the prover knows the secret key, they can convince the verifier of that fact.

We prove and use the following properties of the 2-protocols in this paper.

e Completeness: for an honest prover and honest verifier, the protocol always accepts if the
private input to the prover is a witness of the relation.
e Special Soundness: Given a pair of accepting conversations with the same inputs, but with a
different challenge response, we can compute a witness for the relation.

For 2-protocols with zero-knowledge, the verifier wants to ensure that the prover knows the witness,
while the prover does not want to disclose any additional information about the witness. To model
this behavior, one must be able to construct a simulator that, given the common input to the prover
and verifier, produces accepting conversations with the same distribution as real conversations.
Honest verifier zero-knowledge (HVZK) is the property that making a simulated conversation with
an honest verifier is computationally easy. Here, simulating the conversation means producing a
transcript of a conversation without actually interacting with a prover. Furthermore, this transcript
should have the same distribution as one with a real prover. Special honest verifier zero-knowledge
(SHVZK) is a simulator that uses a specific challenge response for HVZK. For the 2-protocols in
this paper, a proof of SHVZK can be turned into a proof of zero-knowledge [30, Sec. 8 and Ex. 3].

A witness extractor is a procedure that can produce a witness for an input given a number of honest
provers for other input and witness pairs. A protocol is witness hiding if such an extractor succeeds
with the same probability as the verifier. This is usually shown using witness indistinguishability,
which states that given two honest provers with the same input but different witnesses, one cannot
distinguish the conversations of one from the other.

The Schnorr and CDS protocols are instances of X-protocols.

2.3.4 Fiat-Shamir heuristic / Non-interactive zero-knowledge (NIZK) proofs. We use the Fiat-Shamir
heuristic [36] to replace the challenge message in the X-protocol with a hash [30, Sec. 10]. This
allows us to send the entire zero-knowledge proof without having a round of communication in
between. This is also very useful in protocols with many participants and not just two parties, as it
is not obvious who should send the challenge.

, Vol. 1, No. 1, Article . Publication date: January 2026.

CryptoConCert: A Framework for Secure Rust Smart Contract Verification 7

2.4 Security Games, SSP, SSProve

When using all phases of the Hax translation, one ends up with an AST of a functional program,
which can then be printed to F* or Rocq. When only using some phases, one ends up with a simple
imperative program, which one can then print to an embedded DSL in Rocq. In particular, to the
embedded imperative language in SSProve, a library in Rocq, which allows one to reason about
security games and proofs in the state separating (SSP) style.

The focus on having well-defined and modular cryptographic constructions has given rise to
the constructive cryptography [55] paradigm. Here, security is a property that can be constructed
from smaller components with their security properties. That is, applying the ideas of constructive
mathematics to the cryptographic reduction style of proofs.

2.4.1 Advantages and security Games. To measure security, we consider the advantage an adversary
has in distinguishing between two different packages. That is, how much better than random the
adversary is at guessing which of the two packages we are using. Here, a package is a set of
functions; thus, the adversary needs to figure out what code is being used to produce a given result.
Thus, the two packages need to have the same interface.

We represent the advantage of a game between packages X and Y as A(X,Y). We write X =, Y
to represent A(X,Y) < ¢ and call two such packages indistinguishable if A(X,Y) =0, e.g. X = Y.
A game hop replaces X with Y. For a sequence of such hops, the advantage between the first and
the last is bounded by the sum of advantages in each step.

2.4.2 State separating proofs (SSP). The state separating proofs framework [20] defines a calculus
for packages consisting of a collection of import/export interfaces and functions. This calculus
allows one to combine packages in series (inlining function definitions) and in parallel to make
larger packages, provided that their interfaces match. SSP allows one to isolate the shared state
of packages and reason about game hops by isolating the changes and, thus, work with smaller
packages. This facilitates modularity and scalability of security proofs.

A simple example of a security game in SSP is the one-time pad (OTP) encryption. This is
presented as two programs, corresponding to the cryptographer’s real world (reference implemen-
tation) and ideal world (specification) paradigm.

OTPenCO(x) OTPencl(_)
y s {0,1}7 z s {0,1}"

retxey retz

The real package OTPY, . encrypts its input by sampling a uniformly random bit string and xor-ing

it with the input message. The ideal behavior is a uniformly random bit string. Hence, the ideal
package OTP. . samples such a string and returns it. By proving (perfectly) indistinguishability of

the two packages using code equivalence, we obtain

~, OTP}

enc*

oTPY

enc

This allows one to replace any use of the real OTP encryption with the idealized version.

2.4.3 SSProve. SSProve [45] is a foundational library in Rocq for performing cryptographic proofs
in the SSP style. It has an imperative language with state and probability embedded using a monadic
presentation. From this encoding, a relational program logic based on the Dijkstra monad framework
is derived. SSProve formalizes the SSP framework and facilitates modularity and reuse for security
proofs built on top of a probabilistic language. SSProve works in the computational model, which
is more precise than the symbolic (‘Dolev-Yao’) model. As SSProve is embedded in Rocq, one can

, Vol. 1, No. 1, Article . Publication date: January 2026.

8 Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters

use tools and libraries developed for Rocq. Especially having a large mathematical library, like
Mathematical Components (MathComp) [54], eases the formalization effort.

To reason about implementations of cryptographic protocols, one needs a tool for translating the
implementation into SSProve. Hax [14] provides such a translation into SSProve for the Rusty,x
subset of Rust; see Subsection 2.2.1. Thus, we can implement cryptographic primitives using more
advanced language features of Rust, such as traits. Starting from Rust enables us to integrate with
other tools and to use Hax for translating to other backends.

Formulating this process for the OTP example, we can implement OTP in Rust using the xor

function. Hax translates this into SSProve as OTP¢pc impi. We then prove the equivalence of the

0

implementation to the specification OTP,,,.

as an SSP security game.

OTPenc,impl (x) OTPenco(x)
y < {0,1}7 y < {0,1}7
ret x ®ryst Y retx®y

Thus, we use the SSP proof style and its modularity, together with the stateful and probabilistic

imperative language of SSProve, for software verification. The proof of 0TP?, . ~y OTP., . in SSProve

uses of the probabilistic reasoning of SSProve. More advanced proofs can make use of the relation
between the program logic and its semantics in Rocq, which builds on the MathComp library.

3 CRYPTOCONCERT

We introduce a framework for verifying both the correctness and security of smart contracts; see
Figure 1. We implement the smart contract in Rustg,, and use the Hax framework for translating

ConCert)
5| Functional | equivalent | Functional | _verify | Correctness
"1 embedding to specification | against properties

A
J
Compiles . | Compiles
OVN (Rust) to - Equivalence proof to

SSProve

v
(‘ Imperative | equivalent_ Protocol __verify [Security

L’ embedding to Specification | against | properties
\ J

Rocq

R
i

Wasm]

~

/

Fig. 1. Verification pipeline

the implementation into Rocq, specifically SSProve and ConCert. We verify the security (using
SSProve) and correctness (using ConCert) of the translation and extract it to Wasm, which can
be run by most of the blockchains using Rust as a smart contract language. Thus, defining the
translation as the specification of the smart contract, we have a fully verified process.

3.1 SSProve for Program Verification

The SSProve framework has mostly been used for security proofs. In this work, we have used
SSProve as a framework for proving code equivalence between a specification and a protocol. To
aid this process, we have shown properties of any code translated from Hax and made Ltac macros

, Vol. 1, No. 1, Article . Publication date: January 2026.

CryptoConCert: A Framework for Secure Rust Smart Contract Verification 9

for extracting code and facilitating equivalence proofs by following the structure of the code. That
is, we can show two function calls are equal by showing each argument is equal, and then by code
equality of the function, the results will be equal.

3.2 Extending Hax to Support Smart Contracts

Hax can be used as a frontend for protocol verifiers in the symbolic model of cryptography, such as
ProVerif [17] which is based on the applied n-calculus. Since ProVerif abstracts from details in a
Rust implementation, the Hax ProVerif-backend [16] uses extra annotations, to specify how certain
parts of the code should be modelled more abstractly.

We use a similar approach to extend Hax to support smart contracts. We have a concrete model
of the blockchain in Rust, which we abstract in ConCert. Morally, this is the inverse of the final
extraction step when ConCert’s smart contracts are instantiated with a specific (Rust) blockchain.
Concretely, our OVN Rust contract and the extracted Rust code from the Hax/ConCert embedding
can both run on Concordium. We do not prove the correspondence between the two formally.

More concretely, in Rust, blockchain traits are defined using attributes to tag

o the type of the smart contract state,

e which function initializes the contract,

o and what functions can be called in the contract.
Furthermore, the attributes contain the name of the smart contract that they are part of and other
meta-information about additional parameters that are parsed to the different functions. In Hax,
we gather all this information and construct a ConCert model for each smart contract together
with a message type and function for delegating calls to the contract.

4 THE OPEN VOTE NETWORK PROTOCOL

The Open Vote Network (OVN) [43] is a decentralized voting protocol for small-scale elections. It
uses a blockchain to eliminate the need for a trusted third-party and uses zero-knowledge proofs
to detect malicious voters deviating from the protocol. A (n unverified) Solidity implementation
of this protocol was deployed on Ethereum [56]. The OVN protocol allows a small group (of N
voters) to vote anonymously. The protocol is defined by four rounds of communication (1) Register
(2) Commit to vote (3) Cast vote (4) Tally result.

Before the first round, the election admin publishes a list on the blockchain of the N users
allowed to participate in the election. The smart contract ensures that only these users can vote.
The protocol is parametrized by a cyclic group G, with generator g, for which the discrete logarithm
problem is hard. The discrete logarithm problem is: given a group element h, compute n such that
h = ¢g". Examples of such groups come from modular arithmetic or elliptic curves.

Round 1, Register. Each participant P; selects a random secret key x; € Zg|, computes their public
key y; = g*, and a zero-knowledge proof that y; and x; are related using the Schnorr protocol. This
proof is used to ensure that each participant knows their secret key. These zk-proofs and public
keys are published on the blockchain.

Round 2, Commit to vote. Each participant validates all zero-knowledge proofs from the previous
round, computes their reconstruction key g¥: = j;} g/ H;V:i +1 9 and ballot vote; = (g¥)*i g%
for their vote v; € {0, 1}. A commitment to the ballot is published on the blockchain.

The commitment round was not in the original OVN protocol and was added later to prevent an
attack where the last voter could compute the tally before voting. Without this fix, there would be
an adaptive issue: knowledge of the outcome of the tally could influence the voter’s cast vote.

, Vol. 1, No. 1, Article . Publication date: January 2026.

10 Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters

Round 3, Cast vote. Each P; computes a zero-knowledge proof showing that their vote is either 0
or 1 using the CDS protocol. Both the proof and ballot vote; are published on the blockchain.

Round 4, Tally result. Everyone checks the validity of the commitments and the zero knowledge
proofs from the previous round. Finally, all the votes are tallied, and the final result is computed.
The reconstruction keys computed in round 2 are constructed such that the product of all ballots
MY, vote; = gzihil % is the product of all the votes without revealing any single vote. To recover the
tally, the exponent is brute-forced. This requires creating a table of all multiples of the generator.
The size of the table is limited by the number of participants. The smart contract is self-tallying,
meaning that it computes the tally on-chain. However, the tally can also be computed off-chain
by anyone since every vote is publicly available on the smart contract, and computing the tally
requires no private information.

The OVN protocol has the following properties:
e Maximum Ballot Secrecy (see Subsection 5.1): Any party’s secret inputs (secret key and vote)
are indistinguishable from random noise and hence this information stays private.
e Universal Verifiablity (see Subsection 4.1): Anyone can audit the protocol, e.g. validate the
correctness of the execution of the protocol.
o Self-tallying (see Section 6): Any valid run of the protocol will result in the correct tally.
None of the properties have previously been formally verified, although a paper proof of maxi-
mum ballot secrecy exists [43].

4.1 Universal Verifiablity

The property of universal verifiability states that anyone can audit the outcome of the voting
process. This is a property of the construction of the protocol. A separate verifier can be constructed
to check these properties [41]. Here, we ensure the underlying properties hold but do not construct
a verifier. Universal verifiability can be split into the following parts [1].

o Cast as intended: The vote on the ballot corresponds to the voter’s intended choice.

® Recorded as cast: The voter is sure that the ballot recorded is the one they cast.

e Counted as recorded: The tally is correctly counting the ballots on the public board.

e Eligible voter verification: only eligible voters can cast a ballot.
Where cast as intended and recorded as cast are individual properties, meaning that only the
participants of the vote can validate these properties. The counted as recorded property is a universal
verifiable property, meaning anyone can check that the tally is correct. The eligible voter verification
property is handled in the setup phase of the OVN protocol and is thus not further discussed here.

4.1.1 Cast as intended and recorded as cast. All the public keys can be verified to be elements of
the chosen secure group, and each participant computes their own vote and publishes it. Thus, any
participant of the protocol can check that their vote is cast as intended. Likewise, participants can
check that the information they submit corresponds to what is recorded on the blockchain, as all
published information is public. This ensures recorded as cast.

4.1.2 Counted as recorded. The Schnorr proof has built-in validation, which is proven secure and
correct in the 3-protocol framework of SSProve [45, sec.7]. This ensures each party must know
the secret used to generate their public key. The commitments can be validated against the vote,
so everyone can check that the votes have not been changed after the commitment. Finally, we
know that all the votes must be either 0 or 1 votes from the CDS proofs, which is again proven in
SSProve. By the correctness of the protocol, we can check that the final tally is correct. Thus, all
parts of the public transcript can be validated, even by people not participating in the protocol.

, Vol. 1, No. 1, Article . Publication date: January 2026.

CryptoConCert: A Framework for Secure Rust Smart Contract Verification 1

4.1.3 Universal verifiability. The reduction to the validation of the X-protocols (Schnorr and
CDS) is part of their specification. The commitment scheme ensures it is impossible to change
a value one has committed to. Meaning, we have shown that universal verifiability reduces to
standard cryptographic assumptions. That is, the security of each part of universal verifiability has
been reduced to the security of the cryptographic primitives and the discrete logarithm security
assumption for the group. This style of reducing the universal verifiability to the properties of the
primitives has been done more formally in [40] for the related Election Guard (EG) protocol; see
Section 8.1 for a more thorough comparison. In this work, we focus on proving the security and
correctness of the implementation of the voting protocol, not on properties of the external verifiers.

4.2 Rust Implementation of OVN

The OVN smart contract follows the structure laid out at the start of Section 4.

As afirst step for verification, we show that the embedding of Rust implementation is functionally
equivalent to a cleaner specification. We do this both for the functional implementation in ConCert
and for the imperative implementation in SSProve.

Examples of this are the field and group traits. In Rust, we have a trait for the group operations.
However, in Rocq, we want the group laws, so we also add these and package them up using
MathComp’s Hierarchy Builder.

Similarly, for fields, we provide a field in MathComp, but with a more proof friendly representation.
This means that we will need to translate over this equivalence ~60 times in our proof. Instead,
one could transport the properties over this equivalence, as we know they should hold for any
equivalent definition. Trocq [22] aims to facilitate this, but it is still under development.

On the SSProve side, to prove this equivalence, we use the SSP style in a novel way. We use SSP
reductions to show program equivalence, thus extending the SSP technique, which was designed
only for security proofs.

The original OVN protocol [43] had a security issue. We follow the improved protocol [56]. This
improved protocol adds an extra round in which all parties commit to their vote and publish this
commitment before publishing their vote. This ensures that one chooses one’s vote before knowing
the other votes.

5 OVN SECURITY PROOFS

We will give a detailed account of our security proof for the OVN protocol using SSProve (as
introduced in Subsection 2.4).

5.1 Maximum Ballot Secrecy

The security property for a voting protocol like OVN, as described in Section 4, is maximum ballot
secrecy, which states: Any party’s secret inputs (secret key and vote) are indistinguishable from
random noise, and hence this information stays private. We show this property by a sequence of
security games. Each game idealizes part of the protocol until it is fully idealized and thus no longer
depends on the secret inputs. Given that each game hop is indistinguishable from random, the full
transformation is also indistinguishable from random. Thus, the secret inputs are secure, as we can
change them without it being detectable by the adversary.
The security proof uses the following games, which we will introduce below.

e Discrete logarithm

o the Schnorr protocol

e commitment scheme / hashing

e CDS-proof
OVN depends on a group for which the discrete logarithm problem is (computationally) hard.

, Vol. 1, No. 1, Article . Publication date: January 2026.

12 Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters

The Schnorr proof uses the X-protocol framework of SSProve. Thus, we write the mathematical
specification for the Schnorr proof (commit, response, verify, simulate, extractor), prove security
(special honest verifier zero-knowledge, simulation sound extractability), and show it agrees with
our translated Rust implementation. Similarly, for the CDS proof.

The commitment scheme is done by hashing. Thus, we assume the existence of a hashing function
that takes group elements and produces a field element. Such a hash function is also needed for the
Fiat-Shamir transformation of the CDS and Schnorr ZK-proofs.

Once we have all the security statements, we can combine them into a proof of maximum ballot
secrecy. In Section 5.2 we prove that this property extends to the implementation of OVN.

Below is the pseudocode for the specification (OVN°) and the idealization (OVN') of the OVN
protocol.

OVN(i,0;) OVN (i)
/ Register vote / Register vote
xi <5 Zg h, g%, k < DDHgen
Schnorrpp, < Schnorr? (g%, x;) Schnorr gy, Schnorr!(h,_)
Publish : Schnorr ip,. g*' Publish : Schnorr i, h
/ Commit to vote / Commit to vote
validate(Schnorrszj) Vje (1,n) validate(Schnorrzkpj) Vje (1,n)
9% < M
j=i+19
vote; := (g¥1)* - g% vote; « k- g%
commit; := H (vote;) : Zg commit; < Zgq
Publish : commit; Publish : commit;
/ Cast vote / Cast vote
CDS; = CDS(g"", xi, v;) CDS; = DS (¥, ,)
Publish : vote;, CDS; Publish : vote;, CDS;
/ Tally / Tally
CDSvalidate(g?,CDS;j) Vj € (1,n) CDSvalidate(g%,CDS;) Vje (1,n)
CheckCommi t(commitj, votej) Vj € (1,n) CheckCommit(commitj,votej) Vj € (1,n)
tally _ . bruteforce 1 bruteforce
gy = l_[z;otej = tally gty = l_[wtej = tally
J=1 j=1

We prove the security of the specification by idealizing the protocol, thus obtaining a version that
is independent of the secret inputs (vote and secret key). No adversary will be able to distinguish
which input the user chose, ensuring maximum ballot secrecy.

5.1.1 Security assumptions. We built the proof on some security assumptions. We state the as-
sumptions as a security game being bound to a negligible advantage (see Subsection 2.4.1). The

, Vol. 1, No. 1, Article . Publication date: January 2026.

CryptoConCert: A Framework for Secure Rust Smart Contract Verification 13

assumptions are as follows:
d1° ~, d1',
ddh’® ~; ddh’,
commit’® ~ commit’,

0

i v uniform!

uniform v
The value of y; must differ from 0, otherwise the CDS proof does not work. We can ensure y; # 0 by
adding a check and aborting if g% = 1 for any i. This can be checked by anyone, as the computation
only depends on global information. This is done after the first round, before anyone publishes
g¥*i - g%, which would leak the vote.
Aside, one might think this enables a denial-of-service (DOS) attack, where we continue finding values

such that y; = 0 for some i. This is not the case, as this requires

o cither guessing the correct random value, which is one over the order of the group, or

o to efficiently compute

sk _ H;:(l),j#(ng
Hj:i+1,j;ek g9

However, the Schnorr proof forces one to know the secret key sk. Thus, this is as hard as discrete

logarithm (DL).
By these arguments, there is only a negligible chance we will fail the check. Thus, a protocol without the
check is still valid; however, the security bound is slightly weaker.

We generally need y; to be uniformly random, even when people get to choose x; for g™/, thus

we introduce the uniformity as an assumption. But, we expect it to reduce to properties of the
Schnorr protocol and DL.

5.1.2 Discrete logarithm. The first step in the protocol is to generate a private and public key and
publish the public key. We build on the assumption that the discrete logarithm problem is hard

DLqé’ﬂ DLguess (h) DL;uess (—)
Xj <% Zq

storep (x;) x; « loadp.

ret g* ret (g z h) ret false

to ensure that publishing the public key is safe.

5.1.3 The Schnorr proof. The next step is the Schnorr ZK proof. Since this is a Z-protocol, we can
replace the code with a call to a simulator (see Subsection 2.3.3)

Schnorr? Schnorr!
/ Register vote / Register vote
Xi «$2Zq

Schnorr,yp, < Schnorreommitter (h, xi) Schnorr gy, < Schnorrgimuiaror ()

Xi «$2Zg

by the zero-knowledge property; doing this ensures we do not depend on the secret input. Thus
allowing us to push the sampling of the secret input later in the protocol.

, Vol. 1, No. 1, Article . Publication date: January 2026.

14 Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters

5.1.4 Decisional Diffie-Hellman. The security of publishing the vote is based on the decisional
Diffie-Hellman (DDH) assumption.

DDH? DDH!
Xi <% Zg Xi <5 Zg
storepph,o(x;) storeppy,o(x;)
yi <3 Zq yi <3 Zq
storepp,1 (i) storeppy,1(yi)

zi «<$Zq
ret (", g%, g"¥%) ret (g7, g%, g%)

Applying the DDH assumption requires that the values g/, g% are randomly distributed. We
therefore assume that at least one value used (i.e. g*/) to compute g¥ is randomly distributed. This,
combined with the Schnorr proof, ensures that g¥ is randomly distributed, or equivalently that
computing y; is hard.

uniform(;_ uniform?,
i Yi
g kG T k+i
Hl:;l ng
e I uiesZ
[T=i41 9
ret g¥! ret g¥

These two assumption combine to allow us to swap the publish vote for a random value.

5.1.5 Commitment scheme. We build on the assumption that the hash function is secure; thus, we
can idealize the commitment scheme into a random oracle.

commit® commi t!
/ Commit to vote / Commit to vote
Xj «$ Zq

commit; == H(vote;) : Zg commit; < Zg

Xi <—$Zq

This assumption is also used in the Fiat-Shamir transformation (see Subsection 2.3.4) for the Schnorr
and CDS (see Subsection 2.3.2) ZK proofs.

5.1.6 CDS-proof. As for the Schnorr proof, we can idealize the CDS protocol.

cDs? cps!

/ Cast vote / Cast vote

Xj «$ Zq

CDS; = CDScommitter(gyi’xi, v;) CDS; = CDSsimulator(gyi,_, 2)
Xi < Zgq

, Vol. 1, No. 1, Article . Publication date: January 2026.

CryptoConCert: A Framework for Secure Rust Smart Contract Verification 15

5.1.7 Security bound. We use the discrete logarithm (DL) assumption for publishing the public key
without leaking the private key, this adds ¢ to the security bound. We use decisional Diffie-Hellman
(DDH) for publishing our vote without leaking y; - x; + v;, adding { to the security bound. The
argument for not leaking x; and y; - x; + v; is also based on those being chosen from a uniformly
random distribution; however, this is only true if y; is uniformly random, as v; is not chosen
uniformly at random. This assumption reduces to the DL assumption. This adds v to the security
bound, although we expect v = ¢. The transition for the Schnorr and CDS proofs is done without
adding anything extra to the security bound. Finally, we go from hashing to random sampling for
our commitment scheme, which incurs an additional ¥; thus, our final security bound becomes

A(OVNY(b),OVN') < e+ +v+1).

This is the bound for idealizing the protocol given some specific vote. To show the equivalence
between OVN!(true) and OVN!(false), we show there is a bijection between the distributions.
Specifically by synchronizing the sampling with the bijective function kirye = kfalse - g, We get
the equivalence for the vote k¢rue - 977 = (kfalse -) - g7 215 The rest of the transcript for OVN!
does not depend on any private input, thus, are equivalent. Now by transitivity, we can then show
that an adversary can only distinguish the vote with negligible probability, which is the maximum
ballot secrecy property

A(OVN’(false), OVN’(true)) < 2- (e +{ +v+1).

Putting all these steps together, we have now proved maximum ballot secrecy for the OVN protocol.

5.2 Equivalence of OVN;;,,; and OVN?

As explained in Subsection 4.2, to prove the security of the implementation (OVN;;,,;), we need to
show that it is (probabilistically) equivalent to the protocol (OVN°).

Rustpgy is both deterministic and functional. We have built a library for reasoning about such
code in SSProve. An important difference between Rust and SSProve is the sampling of randomness.
In Rustgray, we pass all the randomness as an argument (eager sampling). Whereas, in SSProve we
have a sampling primitive, so we can sample lazily. We prove the equivalence of eager and lazy
code semi-automatically by pushing all sampling to the start of a function and showing that the
sampling functions are equivalent (e.g. sampling a single value twice is the same as sampling a
pair).

SSProve facilitates proving code equivalence modularly by replacing functions independently. In
this way, we use the structure of imperative translation to guide the equivalence of the functional
code. Moreover, we can use the pure translation to prove equivalence by computation, which is
useful for simple code fragments.

6 SELF-TALLYING IN CONCERT

The self-tallying property of OVN states that once all ballots have been cast, anyone (both voters and
outside observers of the protocol) can compute the correct tally without external help. Self-tallying
of OVN follows from the use of smart contracts and blockchains to make ballots publicly available
and the vanishing property of the ballots. The vanishing property comes from the construction of the
reconstruction key such that they cancel out and leave just the votes. We ensure the availability of
the ballots by storing them in the smart contract state, which is publicly available on the blockchain
and can only be mutated by the smart contracts. Thus, the OVN implementation is self-tallying if it
can compute the correct tally using only its public state.

We prove this using ConCert. The proofs are complete and available in the artifact (barring
administrative lemmas, which we will complete before the rebuttal period).

, Vol. 1, No. 1, Article . Publication date: January 2026.

16 Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters

6.1 Proofs

The main theorem that we want to prove for self-tallying is that when the tally field is set in the
contract state, then it is equal to the sum of all votes. We formulate this as an invariant of the smart
contract state over all valid blockchain traces. A valid trace is a chain of blocks starting from the
empty block.

THEOREM 6.1. Consider n parties with votes vy, . . ., v,, and assume that all parties behave honestly.
For any reachable block after OV N is deployed, let s be the contract state in the block and s.t be the
tally field, then if s.t is set thent = Y1, v;.

By universal verifiability and the zero-knowledge proofs that are checked by the smart contract,
we ensure that deviation from the protocol is detected. We can thus assume that all parties be-
have honestly, that is, their inputs to the smart contract are computed according to the protocol
specification.

To prove the theorem, we first show that the smart contract enforces the round structure of the
protocol. This is important since some rounds require that all parties have finished the previous
round, either for security or correctness reasons. Thus, the code should enforce that a party can
only publish a round message while that round is active and that the next round does not start
until all parties have published their messages.

It is imperative that we check this properties, as they are similar to the notorious state machine
attacks [12], where an adversary can change the state of the protocol by publishing messages out
of order or skipping rounds. ConCert’s framework for reasoning about trace properties has some
similarity with the reasoning used by automatic protocol verifiers like Tamarin [8] and ProVerif [17],
where the trace properties are used to ensure that the protocol is executed correctly.

Aside, the requirement of active participation of all parties creates a denial of service problem
with OVN. However, this is not specific to this implementation and is a general limitation of many
boardroom voting protocols. Some implementations use timers to ensure the round structure, and
if there aren’t enough votes by the deadline, the election is declared void, and a new one is typically
started without the parties that did not vote.

Next, we show that each round correctly stores the messages published by the parties and that
these messages are immutable. Together with the previous property and the fact that all parties
are honest, implies that in the last round, all data is available and is computed as specified by the
protocol. Similarly, these properties are also formulated as trace properties and proven by induction
over the trace.

By functional correctness of the tally and compute_reconstruction_key functions we see that
the tally field ¢ equals bruteforce(]]; g¥%g%).

Using that };; x;y; = 0 and the correctness of the bruteforce function we have

t= bruteforce(]—[g iYigh)

1
= bruteforce((l_l geiYh)]_[")
i i

= bruteforce(gzixiyigZi o)
= bruteforce(gogzivi)
= bruteforce(gZi)

-3
i

, Vol. 1, No. 1, Article . Publication date: January 2026.

CryptoConCert: A Framework for Secure Rust Smart Contract Verification 17

Additionally, we also prove other correctness guarantees and desirable properties about the OVN
implementation.

6.2 Implementation Equivalence

The Hax embedding into Rocq is that it embeds both into Rocq and SSProve and gives an automatic
equivalence. Hax embeds a Rust program as a pair (p, f,), where e is a proof that the imperative
program p and the functional program f are equivalent. This can be seen as a refinement of the
functional program f to the imperative program p, or as a realizability relation between the two.
For proving security in SSProve, this representation is useful. However, for correctness, we project
out to the functional representation as this makes the embedding easier to work with. This step
could be automated in the Hax translation.

The functional part is defined using the MathComp library, which is designed to be proof-friendly,
but not well suited for computation. Thus, we first translate this to equivalent Rocq code that
uses the more standard Rocq libraries. CogEAL [23] is an experimental library to automate such
refinements. It is currently being redeveloped using Trocq [22]. It is not yet fully production ready,
so we needed to carry out these transformations manually. Moreover, this transformation was also
needed to resolve universe conflicts between MathComp and Stdpp. Finally, we use this to clean up
a non-optimal Hax-translation of Rust structs. One would like to translate them into records in
Rocq. However, currently this is not possible due to a lack of support for universe polymorphism
in Hierarchy Builder [24].

7 EVALUATION

We evaluated our Hax implementation of OVN on several group implementations and election
sizes ranging up to 500 voters. The code was tested locally. This is a good predictor of on-chain
computation (we will confirm this at the rebuttal stage). The OVN implementation abstracts over
the group and hash implementations. We evaluated the implementation using groups Z; with
64 and 256-bit primes and using a secp256k1 curve reference implementation. In practice, the
code should be instantiated with verified and more efficient implementations, for example, using
libcrux’s [49] x25519 elliptic curve implementation.

Our experiment shows that the implementation can handle boardroom-sized voting, for which the
protocol was designed. Moreover, elections of several hundred voters seem feasible in a reasonable
time. This would allow much bigger elections to be run, since in large elections, the outcome of the
election is usually published per polling station. For more on such elections see Section 8.1. Before
we discuss this, we survey the costs of the individual phases. To evaluate the feasibility, one should
evaluate the cost of running the contract. On blockchains, one pays for computation time and data
storage.

Our evaluation shows that the election initialization time is negligible and most of the cost would
come from the size of the OVN contract. The time spent per voter during registration is constant,
while the per voter time spent in the commit and vote phases scales linearly with the number
of participants. The costs of the commit and vote phases are due to the costs of computing the
reconstruction key, which takes up the majority of the computations. It is possible to compute
the reconstruction keys more efficiently by moving this computation to a separate phase, which
eliminates some duplicate computation of shared subterms. The tallying round is the most expensive
single smart contract call during the protocol and scales linearly in the amount of voters.

This is not a problem for boardroom voting. To scale to bigger elections, one could modify the
smart contract and split the tally call into multiple calls, or compute the tally off-chain and only
verify the tally on-chain.

Another possibility would be to use a closed blockchain; see Section 8.1.

, Vol. 1, No. 1, Article . Publication date: January 2026.

18 Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters

7.1 Compilation

We use CertiRocq-Wasm’s verified compilation to Wasm to produce a verified Wasm implementation
as an alternative to the Rust/Hax implementation. We extract the functional implementation of
OVN in ConCert, rather than the embedded implementation, because MetaRocq currently does
not support sort polymorphism. Finally, we evaluate the extracted Wasm implementation using Z;,
with a 63-bit prime implemented using Rocq’s primitive integers and a 256-bit prime implemented
using Rocq’s binary integer representation. We find that the performance of the Rust and Wasm
implementations is comparable with a factor ~3 performance cost. This is important evidence that
CryptoConCert is practical.

More improvements are within reach: Some performance costs are due to the inefficient group
and hash implementations; see Section 8.5. Moreover, the Rocq implementation uses inefficient
data structures, such as lists instead of arrays. Rocq’s native arrays are currently not supported
by CertiRocq-Wasm. In an unverified extraction, such issues could be addressed by remappings.
However, this is not supported by CertiRocq-Wasm.

8 RELATED AND FUTURE WORK
8.1 Verified Voting Software

There are still many obstacles for online voting for national elections [9]. However, online voting
protocols are in use today for boardroom voting, school and university elections, minor elections,
etc...Here, our methodology already provides an improvement to the state of the art. Online voting
also has some benefits over voting by mail [67]. The use of permissionless blockchains provides
transparency, but comes with a possible attack vector where the majority of the computational
power, or stake, may be biased toward a certain outcome. However, the ConCert framework is
flexible enough that it could be run on a permissioned ("closed") blockchain such as Hyperledger,
which also supports Wasm.

ElectionGuard [9] is another protocol that is run on a blockchain®. It uses similar building blocks
(homomorphic tallying), and our methods should apply, as both protocols are based on [29]. The
ElectionGuard Rust implementation [9] already includes verified cryptographic primitives from the
HACL* library [69]. Compared to ElectionGuard, OVN is less dependent on an election committee,
as it uses more of the blockchain. To do so, it bruteforces the discrete log for small numbers on-chain,
this makes it less efficient.

In comparison to Subsection 4.1, the universal verifiability of the ElectionGuard protocol has
been proved in Rocq [40]. They do this by verifying a verifier that checks the traces of the zk-proofs,
but does not prove properties of the full protocol. Their work mentions clear limitations [40, 3.2]: 1.
They do not verify the privacy of the vote. We do. 2. To avoid probabilistic reasoning, they use a
non-standard treatment of X-protocols. We followed the standard treatment, including Fiat-Shamir
(2.3.4), in the computational model. 3. They use the unverified extraction from Rocq to OCaml (with
unverified remappings). In comparison, we use verified compilation to Wasm.

The strategy of “Verifying the verifiers’ [40] was first applied to the Helios protocol [41]. The
privacy of the Helios protocol and many variants, was proved in the computational model in Easy-
Crypt [25]. They emphasize that security of the implementation is an important open problem [25,
V.C].

Both [41] and [42] verify mix-nets, which are important components of other voting protocols,
but are not used in OVN or ElectionGuard.

Belenios is a voting protocol inspired by Helios. The security of the Belenios protocol has been
verified in the computational model in Easycrypt [26]. The Belenios certification campaign [18]

3electis.com, concordium.com/article/concordiums-on-chain-voting-protocol

, Vol. 1, No. 1, Article . Publication date: January 2026.

electis.com
concordium.com/article/concordiums-on-chain-voting-protocol

CryptoConCert: A Framework for Secure Rust Smart Contract Verification 19

uses formal verification to aid ANSII certification and provides recommendations for a further
integration of formal verification in such certification endeavors; see also [11, 62]. They emphasize
the need for formal guarantees of the implementation of the protocol, not just the protocol itself.
This is precisely a topic we contribute to: By showing that verifying cryptographic smart contracts
is feasible, we hope to increase the general requirements for smart contracts, as e.g., the EU Data
Act* already demands using best practices. Similarly, there is high demand for electronic voting.
For example, the Swiss voting regulation already demands formal proofs of cryptographic security”.
However, these voting regulations currently say little about software security.

8.2 Rust Verification

Rust is a multi-paradigm language and as such verification of Rust programs varies with the
application domain one targets. In the security domain, the safe part of Rust with a functional
semantics tends to suffice, as one can separate the verification of the main protocol from the
implementation of the cryptographic primitives. The latter tend to be best generated from proof
assistants; e.g. [33, 49, 69]. The main protocol can then be made parametric over this implementation
by, for example, the Rust trait system. This separation of concerns also means that issues like
side-channel resistance can be treated by dedicated toolchains such as the ones mentioned above.

There are several Rust verification tools in active development; see [66, 5.1] for a recent overview.
None of them has been used on smart contracts, moreover Hax is the only one that has been used
on larger cryptographic protocols.

We restrict our discussion here to Rust verification in proof assistants.

o RefinedRust [37] uses RustBelt [48] to reason about a variant of Rust’s Vec implementation
that involves intricate reasoning about unsafe pointer-manipulating code. Its target domain
is small and very complex Rust code, whereas Hax focuses on bigger protocols in the security
domain.

e Aeneas [46] provides a functional semantics for a larger subset of safe Rust than Hax. Hax
and Aeneas share the frontend code. Aeneas starts from Rust’s MIR intermediate language,
whereas Hax starts from the higher level HIR, thus staying closer to the code the programmer
wrote. Aeneas is being used to verify Microsoft’s SymCrypt library of verified cryptographic
primitives®. However, it does not include an embedding into a framework like SSProve to
verify security protocols, nor has it been used for smart contract security. Its main backend is
in Lean, which does not have a verified compiler to Wasm. However, Aeneas’ Rocq backend
could target Wasm similarly as we do.

8.3 Verification of Cryptographic Implementations

A careful comparison with related work on cryptographic verification is available in the SSProve
paper [45]. An important contribution of the present work is that we verify Rust code and generate
on-chain Wasm.

The closest work to ours is perhaps the verification of a post-quantum TLS implementation [16].
Like us, it uses Hax and SSProve. However, they use a more hybrid approach that combines multiple
provers. Unlike us, they do not use verified compilation of Rust code.

Ho et.al. [47] provide verified C implementations for instances of the Noise protocol. Their
framework provides verification in the symbolic (‘Dolev-Yao’) model of cryptography. The symbolic

4https://www.eu-data-act.com/Data_Act_Article_36.html
Shttps://www.bk.admin.ch/bk/en/home/politische-rechte/e-voting/sicherheit-beim-e-voting. html
Shttps://www.microsoft.com/en-us/research/blog/rewriting-symecrypt-in-rust-to-modernize-microsofts-cryptographic-
library/

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://www.eu-data-act.com/Data_Act_Article_36.html
https://www.bk.admin.ch/bk/en/home/politische-rechte/e-voting/sicherheit-beim-e-voting.html
https://www.microsoft.com/en-us/research/blog/rewriting-symcrypt-in-rust-to-modernize-microsofts-cryptographic-library/
https://www.microsoft.com/en-us/research/blog/rewriting-symcrypt-in-rust-to-modernize-microsofts-cryptographic-library/

20 Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters

model can be used for Zero-knowledge proofs [5], but this would gloss over many more details of
the implementation.

Protzenko et.al. [61] emphasize the need for providing a Wasm implementation of HACS. They
provide efficient, but unverified, extraction from F* to Wasm, which they apply to the HACL*
cryptographic library and libsignal.

OwIC [65], like us, emphasizes the need for secure implementations. They start from a symbolic
protocol and emit Rust code. The generation of rust code is trusted, and, moreover, it still depends
on the Rust compiler. Instead, we compile, in a verified way, to Wasm. Their key application domain
consists of protocols that include a lot of communication, such as those traditionally analyzed in
the symbolic model. It has not been applied to zero-knowledge applications yet, and it is unclear to
us whether they would be supported by the Owl language.

8.4 Smart Contract Verification

As with other software, lightweight formal methods are in regular use for smart contracts. Here,
we restrict our focus to formal verification using proof assistants.

Simplicity [59] is a smart contract language for Bitcoin that comes with formalized semantics.

The position paper [15] was the first to consider verified compilation from Solidity to EVM using
F*. Grishchenko et.al. [39] provides a complete small-step semantics of EVM bytecode in the F*
proof assistant.

Scilla [64] is a smart contract IR with a semantics in Rocq. It has been used to verify a Crowd-
funding contract.

ConCert (Section 2.1) provides verified extraction from Rocq to a number of smart contract
languages, including Rust and Tezos’ CameLIGO. It has been used to prove key properties of
interacting smart contracts [2, 4, 58], such as a decentralized exchange (DEX), a DAO, escrow, token
standards, and a liquidity exchange protocol.

Mi-cho-Coq [10] formalizes the operational semantics of Tezos’ Michelson on-chain language.

Cardano uses a UTXO-like model. They provide verified implementations of a multi-signature
wallet and a DEX [35] in Agda, which they then extract to Haskell. Cardano uses a Haskell-
like smart contract language, Plutus. Krijnen et.al. [51] present an ongoing effort to provide a
verifying compiler, based on translation validation — that is, during the compilation of a program,
the compiler provides independently-checkable evidence that each compiler step is carried out
correctly. Djed [68] is a Plutus stable coin contract. Parts of its mathematical specification have
been verified in Isabelle.

The MoveProver [32] is a dedicated prover for the Rust-like Move smart contract language.

8.5 Future Work

As discussed in Section 7 and 6, there are a number of issues in the Rocq eco-system that make it
hard to combine libraries. The forthcoming integration of Sort polymorphism [60] in MetaRocq,
algebraic universes [13] and Trocq, should facilitate developing large libraries like ours.

Some of our proofs can likely be simplified by using the nominal extension of SSProve [52],
which is in the process of being merged into the main SSProve library.

The performance of our Rust implementation can be improved by using a verified Rust imple-
mentation of elliptic curves, such as is available in the libcrux library [49]. On the Wasm side, one
could extend CertiRocq-Wasm with verified implementations of optimized cryptography. Here, one
could follow the methodology of VeriFFI [50].

, Vol. 1, No. 1, Article . Publication date: January 2026.

CryptoConCert: A Framework for Secure Rust Smart Contract Verification 21

ACKNOWLEDGEMENT

We would like to thank Markus Krabbe Larsen who spotted an insecurity in the definition of the
discrete log assumption and gave a reference for how to fix it. We would also like to thank DIREC
for funding the project.

REFERENCES

[1

[2

[3

[4

]
]

]
]

Ben Adida and C. Andrew Neff. 2006. Ballot casting assurance. In Proceedings of the USENIX/Accurate Electronic Voting
Technology Workshop 2006 on Electronic Voting Technology Workshop (EVI’06). USENIX Association, USA, 7.

Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters. 2021. Extracting Smart Contracts Tested and
Verified in Coq. In Proceedings of the 10th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP
2021). Association for Computing Machinery, New York, NY, USA, 105-121. https://doi.org/10.1145/3437992.3439934
Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters. 2022. Extracting functional programs from Coq,
in Coq. Journal of Functional Programming 32 (2022), e11. https://doi.org/10.1017/S0956796822000077

Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. 2020. ConCert: A Smart Contract Certification Framework
in Coq. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2020).
Association for Computing Machinery, New York, NY, USA, 215-228. https://doi.org/10.1145/3372885.3373829

[5] Michael Backes, Matteo Maffei, and Dominique Unruh. 2008. Zero-Knowledge in the Applied Pi-calculus and Automated

[6

[7
(8

[9

[10

[11

(12

(13

(14

[15

(16

(17

(18

—

—

]

—

]

=

]

=

=

=

= O

Verification of the Direct Anonymous Attestation Protocol. In 2008 IEEE Symposium on Security and Privacy (sp 2008).
IEEE Computer Society, New York City, USA, 202-215. https://doi.org/10.1109/SP.2008.23

Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno. 2021.
SoK: Computer-Aided Cryptography. In 42nd IEEE Symposium on Security and Privacy, SP 2021. IEEE, New York City,
USA, 777-795.

Gilles Barthe, Francois Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and Pierre-Yves Strub. 2013.
EasyCrypt: A Tutorial. In FOSAD (Lecture Notes in Computer Science, Vol. 8604). Springer, 146—166.

David A. Basin, Cas Cremers, Jannik Dreier, and Ralf Sasse. 2022. Tamarin: Verification of Large-Scale, Real-World,
Cryptographic Protocols. IEEE Secur. Priv. 20, 3 (2022), 24-32.

Josh Benaloh, Michael Naehrig, Olivier Pereira, and Dan S. Wallach. 2024. ElectionGuard: a Cryptographic Toolkit to
Enable Verifiable Elections. In 33rd USENIX Security Symposium (USENIX Security 24). USENIX Association, Philadelphia,
PA, USA, 5485-5502. https://www.usenix.org/conference/usenixsecurity24/presentation/benaloh

Bruno Bernardo, Raphaél Cauderlier, Zhenlei Hu, Basile Pesin, and Julien Tesson. 2019. Mi-Cho-Coq, a Framework
for Certifying Tezos Smart Contracts. In FM Workshops (1) (Lecture Notes in Computer Science, Vol. 12232). Springer,
368-379.

Yves Bertot, Maxime Dénés, Arnaud Fontaine, Vincent Laporte, and Thomas Letan. 2020. Requirements on the Use of
Coq in the Context of Common Criteria Evaluations. , 20 pages. https://inria.hal.science/hal-04452421

Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. 2017. A messy state of the union: taming the composite state
machines of TLS. Commun. ACM 60, 2 (2017), 99-107.

Marc Bezem, Thierry Coquand, Peter Dybjer, and Martin Escardé. 2022. Type Theory with Explicit Universe Polymor-
phism. In TYPES (LIPIcs, Vol. 269). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 13:1-13:16.

Karthikeyan Bhargavan, Maxime Buyse, Lucas Franceschino, Lasse Letager Hansen, Franziskus Kiefer, Jonas Schneider-
Bensch, and Bas Spitters. 2025. hax: Verifying Security-Critical Rust Software Using Multiple Provers. In Verified
Software. Theories, Tools and Experiments: 16th International Conference, VSTTE 2024, Prague, Czech Republic, October
14~15, 2024, Revised Selected Papers. Springer-Verlag, Berlin, Heidelberg, 96-119. https://doi.org/10.1007/978-3-031-
86695-1_7

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi, Georges Gonthier, Nadim
Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin.
2016. Formal Verification of Smart Contracts: Short Paper. In Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security (PLAS ’16). Association for Computing Machinery, New York, NY, USA, 91-96.
https://doi.org/10.1145/2993600.2993611

Karthikeyan Bhargavan, Lasse Letager Hansen, Franziskus Kiefer, Jonas Schneider-Bensch, and Bas Spitters. 2025.
Formal Security and Functional Verification of Cryptographic Protocol Implementations in Rust. Cryptology ePrint
Archive, Paper 2025/980. https://eprint.iacr.org/2025/980

Bruno Blanchet. 2016. Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif. Found.
Trends Priv. Secur. 1, 1-2 (2016), 1-135.

Angele Bossuat, Eloise Brocas, Véronique Cortier, Pierrick Gaudry, Stéphane Glondu, and Nicolas Kovacs. 2024.
Belenios: the Certification Campaign. In SSTIC 2024 - Symposium sur la sécurité des technologies de 'information et des

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.1145/3437992.3439934
https://doi.org/10.1017/S0956796822000077
https://doi.org/10.1145/3372885.3373829
https://doi.org/10.1109/SP.2008.23
https://www.usenix.org/conference/usenixsecurity24/presentation/benaloh
https://inria.hal.science/hal-04452421
https://doi.org/10.1007/978-3-031-86695-1_7
https://doi.org/10.1007/978-3-031-86695-1_7
https://doi.org/10.1145/2993600.2993611
https://eprint.iacr.org/2025/980

22 Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters

communications. HAL CCSD, Rennes, France, 19 pages. https://inria.hal.science/hal-04578848

Lars Briinjes and Murdoch James Gabbay. 2020. UTxO- vs Account-Based Smart Contract Blockchain Programming

Paradigms. In Leveraging Applications of Formal Methods, Verification and Validation: Applications, Tiziana Margaria and

Bernhard Steffen (Eds.). Springer International Publishing, Cham, 73-88. https://doi.org/10.1007/978-3-030-61467-6_6

Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok, and Markulf Kohlweiss. 2018. State

Separation for Code-Based Game-Playing Proofs. In Advances in Cryptology — ASIACRYPT 2018 (Lecture Notes in

Computer Science, Vol. 11274), Thomas Peyrin and Steven Galbraith (Eds.). Springer International Publishing, Cham,

222-249. https://doi.org/10.1007/978-3-030-03332-3_9

Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Michael Peyton Jones, and Philip

Wadler. 2020. The Extended UTXO Model. In Financial Cryptography and Data Security, Matthew Bernhard, Andrea

Bracciali, L. Jean Camp, Shin’ichiro Matsuo, Alana Maurushat, Peter B. Renne, and Massimiliano Sala (Eds.). Springer

International Publishing, Cham, 525-539.

Cyril Cohen, Enzo Crance, and Assia Mahboubi. 2024. Trocq: Proof Transfer for Free, With or Without Univalence. In

Programming Languages and Systems (Lecture Notes in Computer Science, Vol. 14576), Stephanie Weirich (Ed.). Springer,

Cham, 239-268.

Cyril Cohen, Maxime Dénés, and Anders Mortberg. 2013. Refinements for Free!. In CPP (Lecture Notes in Computer

Science, Vol. 8307). Springer, 147-162.

Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. 2020. Hierarchy Builder: Algebraic hierarchies Made Easy in

Coq with Elpi (System Description). In FSCD (LIPIcs, Vol. 167). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,

34:1-34:21.

Véronique Cortier, Constantin Catalin Dragan, Francois Dupressoir, Benedikt Schmidt, Pierre-Yves Strub, and Bogdan

Warinschi. 2017. Machine-Checked Proofs of Privacy for Electronic Voting Protocols. In IEEE Symposium on Security

and Privacy. IEEE Computer Society, New York City, USA, 993-1008. https://doi.org/10.1109/SP.2017.28

Véronique Cortier, Constantin Catalin Dragan, Francois Dupressoir, and Bogdan Warinschi. 2018. Machine-checked

proofs for electronic voting: privacy and verifiability for Belenios. In 2018 IEEE 31st Computer Security Foundations

Symposium (CSF). IEEE, IEEE Computer Society, New York City, USA, 298-312. https://doi.org/10.1109/CSF.2018.00029

Ronald Cramer. 1997. Modular Design of Secure yet Practical Cryptographic Protocols. Ph. D. Dissertation. Quantum

Computing and Advanced System Research, Universiteit van Amsterdam.

Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. 1994. Proofs of Partial Knowledge and Simplified Design of

Witness Hiding Protocols. In Advances in Cryptology — CRYPTO °94 (Lecture Notes in Computer Science, Vol. 839), Yvo

Desmedt (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 174-187. https://doi.org/10.1007/3-540-48658-5_19

Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. 1997. A secure and optimally efficient multi-authority

election scheme. Eur. Trans. Telecommun. 8, 5 (1997), 481-490.

Ivan Damgéard. 2010. On 2-protocols. https://www.cs.au.dk/~ivan/Sigma.pdf

Ivan Damgard. 1998. Commitment Schemes and Zero-Knowledge Protocols. In Lectures on Data Security, Modern

Cryptology in Theory and Practice, Summer School, Aarhus, Denmark, July 1998 (Lecture Notes in Computer Science,

Vol. 1561), Ivan Damgard (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 63-86. https://doi.org/10.1007/3-540-

48969-X_3

David L. Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng Xu, and Jingyi Emma Zhong. 2022. Fast and

Reliable Formal Verification of Smart Contracts with the Move Prover. In TACAS (1) (Lecture Notes in Computer Science,

Vol. 13243). Springer, 183-200.

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. 2020. Simple High-Level Code For

Cryptographic Arithmetic: With Proofs, Without Compromises. SIGOPS Oper. Syst. Rev. 54, 1 (Aug. 2020), 23-30.

https://doi.org/10.1145/3421473.3421477

Uriel Feige and Adi Shamir. 1990. Witness Indistinguishable and Witness Hiding Protocols. In Proceedings of the

Twenty-Second Annual ACM Symposium on Theory of Computing, Harriet Ortiz (Ed.). Association for Computing

Machinery, New York, NY, USA, 416-426. https://doi.org/10.1145/100216.100272

[35] Tudor Ferariu, Philip Wadler, and Orestis Melkonian. 2025. Validity, Liquidity, and Fidelity: Formal Verification for
Smart Contracts in Cardano. In 6th International Workshop on Formal Methods for Blockchains (FMBC 2025) (Open Access
Series in Informatics (OASIcs), Vol. 129), Diego Marmsoler and Meng Xu (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, Dagstuhl, Germany, 6:1-6:21. https://doi.org/10.4230/OASIcs. FMBC.2025.6

[36] Amos Fiat and Adi Shamir. 1987. How To Prove Yourself: Practical Solutions to Identification and Signature Problems.

In Advances in Cryptology — CRYPTO’ 86, Andrew M. Odlyzko (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

186-194.

Lennard Géher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer. 2024. RefinedRust: A Type System

for High-Assurance Verification of Rust Programs. Proc. ACM Program. Lang. 8, PLDI (2024), 1115-1139. https:

//doi.org/10.1145/3656422

(19

[

[20

=

(21

—

[22

—

[23

[t

[24

[l

[25

=

[26

=

[27

—

[28

=

[29

—

—
w
=3

[t

(31

—

(32

—

(33

=

[34

=

[37

[

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://inria.hal.science/hal-04578848
https://doi.org/10.1007/978-3-030-61467-6_6
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1109/SP.2017.28
https://doi.org/10.1109/CSF.2018.00029
https://doi.org/10.1007/3-540-48658-5_19
https://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/3-540-48969-X_3
https://doi.org/10.1007/3-540-48969-X_3
https://doi.org/10.1145/3421473.3421477
https://doi.org/10.1145/100216.100272
https://doi.org/10.4230/OASIcs.FMBC.2025.6
https://doi.org/10.1145/3656422
https://doi.org/10.1145/3656422

CryptoConCert: A Framework for Secure Rust Smart Contract Verification 23

[38] S Goldwasser, S Micali, and C Rackoff. 1985. The knowledge complexity of interactive proof-systems. In Proceedings of
the Seventeenth Annual ACM Symposium on Theory of Computing (STOC ’85). Association for Computing Machinery,
New York, NY, USA, 291-304. https://doi.org/10.1145/22145.22178

[39] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic Framework for the Security Analysis of
Ethereum Smart Contracts. In POST (Lecture Notes in Computer Science, Vol. 10804). Springer, 243-269.

[40] Thomas Haines, Rajeev Goré, and Jack Stodart. 2020. Machine-Checking the Universal Verifiability of ElectionGuard.
In Secure IT Systems: 25th Nordic Conference, NordSec 2020, Virtual Event, November 23-24, 2020, Proceedings. Springer-
Verlag, Berlin, Heidelberg, 57-73. https://doi.org/10.1007/978-3-030-70852-8_4

[41] Thomas Haines, Rajeev Goré, and Mukesh Tiwari. 2019. Verified Verifiers for Verifying Elections. In CCS. Association
for Computing Machinery, New York, NY, USA, 685-702. https://doi.org/10.1145/3319535.3354247

[42] Thomas Haines, Rajeev Gore, and Mukesh Tiwari. 2023. Machine-checking Multi-Round Proofs of Shuffle: Terelius-
Wikstrom and Bayer-Groth. In 32nd USENIX Security Symposium (USENLX Security 23). USENIX Association, Anaheim,
CA, 6471-6488. https://www.usenix.org/conference/usenixsecurity23/presentation/haines

[43] F. Hao, PY.A. Ryan, and P. Zielinski. 2010. Anonymous Voting by Two-Round Public Discussion. IET

Information Security 4 (2010), 62-67. Issue 2. https://doi.org/10.1049/iet-ifs.2008.0127 arXiv:https://digital-

library.theiet.org/doi/pdf/10.1049/iet-ifs.2008.0127

Philipp G. Haselwarter, Benjamin Salling Hvass, Lasse Letager Hansen, Théo Winterhalter, Catalin Hrifcu, and Bas

Spitters. 2024. The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography. In Proceedings of the

13th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2024). Association for Computing

Machinery, New York, NY, USA, 30-44. https://doi.org/10.1145/3636501.3636961

Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Winterhalter, Carmine Abate, Nikolaj Sidorenco,

Catalin Hritcu, Kenji Maillard, and Bas Spitters. 2023. SSProve: A Foundational Framework for Modular Cryptographic

Proofs in Coq. ACM Trans. Program. Lang. Syst. 45, 3, Article 15 (jul 2023), 61 pages. https://doi.org/10.1145/3594735

Son Ho and Jonathan Protzenko. 2022. Aeneas: Rust verification by functional translation. Proc. ACM Program. Lang.

6, ICFP, Article 116 (aug 2022), 31 pages. https://doi.org/10.1145/3547647

[47] Son Ho, Jonathan Protzenko, Abhishek Bichhawat, and Karthikeyan Bhargavan. 2022. Noise: A Library of Verified

High-Performance Secure Channel Protocol Implementations. In 2022 IEEE Symposium on Security and Privacy (SP).

IEEE Computer Society, New York City, USA, 107-124. https://doi.org/10.1109/SP46214.2022.9833621

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt: securing the foundations of the

rust programming language. Proc. ACM Program. Lang. 2, POPL (2018), 66:1-66:34. https://doi.org/10.1145/3158154

Franziskus Kiefer, Karthikeyan Bhargavan, Lucas Franceschino, Denis Merigoux, Lasse Letager Hansen, Bas Spitters,

Manuel Barbosa, Antoine Séré, and Pierre-Yves Strub. 2023. HACSPEC: a gateway to high-assurance cryptography.

Video at https://youtu.be/lahO3de3k_0?t=7, abstract at https://github.com/hacspec/hacspec/blob/master/rwc2023-

abstract.pdf.

[50] Joomy Korkut, Kathrin Stark, and Andrew W. Appel. 2025. A Verified Foreign Function Interface between Coq and C.
Proc. ACM Program. Lang. 9, POPL, Article 24 (Jan. 2025), 31 pages. https://doi.org/10.1145/3704860

[51] Jacco O. G. Krijnen, Manuel M. T. Chakravarty, Gabriele Keller, and Wouter Swierstra. 2024. Translation certification
for smart contracts. Sci. Comput. Program. 233 (2024), 103051.

[52] Markus Krabbe Larsen and Carsten Schiirmann. 2025. An Induction Principle for Hybrid Arguments in Nominal-
SSProve. , 1122 pages. https://eprint.iacr.org/2025/1122

[53] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107-115.

[54] Assia Mahboubi and Enrico Tassi. 2022. Mathematical Components. Zenodo, Genéve, Switzerland. https://doi.org/10.
5281/zen0do.3999478

[55] Ueli Maurer. 2012. Constructive Cryptography — A New Paradigm for Security Definitions and Proofs. In Theory of
Security and Applications, Sebastian Modersheim and Catuscia Palamidessi (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 33-56.

[56] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. 2017. A Smart Contract for Boardroom Voting with Maximum

Voter Privacy. In Financial Cryptography and Data Security - 21st International Conference, FC 2017, Sliema, Malta,

April 3-7, 2017, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 10322), Aggelos Kiayias (Ed.). Springer

International Publishing, Cham, 357-375. https://doi.org/10.1007/978-3-319-70972-7_20

Wolfgang Meier, Martin Jensen, Jean Pichon-Pharabod, and Bas Spitters. 2025. CertiCoq-Wasm: A Verified WebAssembly

Backend for CertiCoq. In Proceedings of the 14th ACM SIGPLAN International Conference on Certified Programs and

Proofs (Denver, CO, USA) (CPP °25). Association for Computing Machinery, New York, NY, USA, 127-139. https:

//doi.org/10.1145/3703595.3705879

Eske Hoy Nielsen, Danil Annenkov, and Bas Spitters. 2023. Formalising Decentralised Exchanges in Coq. In Proceedings

of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2023). Association for

Computing Machinery, New York, NY, USA, 290-302. https://doi.org/10.1145/3573105.3575685

(44

flan!

[45

=

(46

=

(48

=

[49

[

(57

—

(58

[

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-030-70852-8_4
https://doi.org/10.1145/3319535.3354247
https://www.usenix.org/conference/usenixsecurity23/presentation/haines
https://doi.org/10.1049/iet-ifs.2008.0127
https://arxiv.org/abs/https://digital-library.theiet.org/doi/pdf/10.1049/iet-ifs.2008.0127
https://arxiv.org/abs/https://digital-library.theiet.org/doi/pdf/10.1049/iet-ifs.2008.0127
https://doi.org/10.1145/3636501.3636961
https://doi.org/10.1145/3594735
https://doi.org/10.1145/3547647
https://doi.org/10.1109/SP46214.2022.9833621
https://doi.org/10.1145/3158154
https://youtu.be/lahO3de3k_0?t=7
https://github.com/hacspec/hacspec/blob/master/rwc2023-abstract.pdf
https://github.com/hacspec/hacspec/blob/master/rwc2023-abstract.pdf
https://doi.org/10.1145/3704860
https://eprint.iacr.org/2025/1122
https://doi.org/10.5281/zenodo.3999478
https://doi.org/10.5281/zenodo.3999478
https://doi.org/10.1007/978-3-319-70972-7_20
https://doi.org/10.1145/3703595.3705879
https://doi.org/10.1145/3703595.3705879
https://doi.org/10.1145/3573105.3575685

24 Lasse Letager Hansen, Eske Hoy Nielsen, Nikolaj Sidorenco, and Bas Spitters

[59] Russell O’Connor. 2017. Simplicity: A New Language for Blockchains. In PLAS@CCS. ACM, 107-120.

[60] Josselin Poiret, Gaétan Gilbert, Kenji Maillard, Pierre-Marie Pédrot, Matthieu Sozeau, Nicolas Tabareau, and Eric Tanter.
2025. All Your Base Are Belong to Us: Sort Polymorphism for Proof Assistants. Proc. ACM Program. Lang. 9, POPL
(2025), 2253-2281.

[61] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and Karthikeyan Bhargavan. 2019. Formally Verified
Cryptographic Web Applications in WebAssembly. In IEEE Symposium on Security and Privacy. IEEE, New York City,
USA, 1256-1274.

[62] Jonathan Protzenko and Bas Spitters. 2024. Modernizing FIPS for safe languages and verified libraries. NIST Workshop
on Formal Methods within Certification Programs (FMCP 2024).

[63] Claus-Peter Schnorr. 1991. Efficient Signature Generation by Smart Cards. J. Cryptol. 4, 3 (1991), 161-174. https:
//doi.org/10.1007/BF00196725

[64] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018. Scilla: a Smart Contract Intermediate-Level LAnguage. CoRR

abs/1801.00687 (2018).

Pratap Singh, Joshua Gancher, and Bryan Parno. 2025. OwlC: Compiling Security Protocols to Verified, Secure,

High-Performance Libraries. Cryptology ePrint Archive, Paper 2025/1092. https://eprint.iacr.org/2025/1092

[66] The Everest team. 2025. Project Everest: Perspectives from Developing Industrial-grade High-Assurance Software. Technical
Report. Project Everest Team. https://project-everest.github.io/assets/everest-perspectives-2025.pdf

[67] Jelizaveta Vakarjuk, Nikita Snetkov, and Jan Willemson. 2025. Comparing security levels of postal and Internet voting.
Information Security Journal: A Global Perspective 34, 4 (2025), 265-285. https://doi.org/10.1080/19393555.2024.2410332

[68] Joachim Zahnentferner, Dmytro Kaidalov, Jean-Frédéric Etienne, and Javier Diaz. 2021. Djed: A Formally Verified
Crypto-Backed Pegged Algorithmic Stablecoin. IACR Cryptol. ePrint Arch. (2021), 1069.

[69] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin Beurdouche. 2017. HACL*:
A Verified Modern Cryptographic Library. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu (Eds.). Association for Computing Machinery, New York, NY, USA, 1789-1806.
https://doi.org/10.1145/3133956.3134043

(65

=

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://eprint.iacr.org/2025/1092
https://project-everest.github.io/assets/everest-perspectives-2025.pdf
https://doi.org/10.1080/19393555.2024.2410332
https://doi.org/10.1145/3133956.3134043

148 CHAPTER 6. CRYPTOCONCERT

6.5 Summary

In this paper, we show how to prove the security and correctness of a voting smart
contract. We prove that the protocol keeps the vote hidden by showing maximum
ballot secrecy in SSProve. The correctness property of self-tallying is shown using
ConCert. The final voting property is universal verifiability, which states that a
verifier can be constructed to validate runs of the protocol. This is, like the paper in
the previous chapter (Chapter 5), an example of combining a trace-based symbolic
verification tool with tools based on the computational model (e.g., SSProve), thereby
extending the capabilities of both.

6.6 Maximum Ballot Secrecy - Alternative in SSP Style

The proof for maximum ballot secrecy in the paper uses code rewriting to show we
can push the sampling of the private key after everything; thus, nothing will depend
on it. However, this is not the state-separating proof (SSP) style (see §2.3) of doing
proofs. In this section we will introduce how the proof would look if done in the SSP
style [18, 21].

Overview of the Proof

The key insight to invoke the modularity of SSP is to keep common dependencies
in a separate package. Thus, for OVN we would have a separate store for each part
of the common information. E.g., the Schnorr protocol will produce a key and put it
into K, instead of handling the shared information itself. This allows us to reason
separately about the use of the information and the generation of the information. We
will first look at how the proof in the paper would look in SSP style. Afterwards we
will look at a formulation of the proof taking each party into account, thus allowing
more arbitrary updates of the state.

Another generalization of the proof is to look at all parties communicating instead
of looking at the state from a single party, as we did in the paper. The formalization
proceeds in a similar manner, but more of the reasoning happens at the level of
packages instead of reasoning of code. This helps increase the level of abstraction
while maintaining precision and achieving the same security bound (per party).

To put the proof in perspective, we will show how the paper proof would look
using the SSP games; see Figure 6.7. Thus, to go from the real game to the ideal game,
we do the following sequence of game jumps:

* idealize the Schnorr protocol and use the discrete log assumption to then swap
Schnorr' and Gen?;

* use the discrete log assumption and the assumption that y; is random to pack
the vote in DDH, and idealize it;

* idealize the hash function and then swap Hash' and Gen’;

6.6. MAXIMUM BALLOT SECRECY - ALTERNATIVE IN SSP STYLE 149

GEN DDH

——HN Gen’ —— ppu!
SCHNORR SCHNORR
—— ¥ Schnorr? —— > Schnorr!

> OVN? < OVN_, ovN!

4 | HASH 4 HASH
M Hash® M Hash!

CDS CDS

— > ¢cps? ——— > ps!

(a) real OVN protocol (b) ideal OVN protocol

OVN

Figure 6.7: Maximum ballot secrecy proof from paper

« idealize the CDS protocol and then swap CDS! and Gen"; and
* finally, idealize the private key generation as nothing depends on it.

The first step towards a more modular proof is to introduce the state as a package,
instead of an input to the packages, and then separate OVN into the register, commit,
vote and tally rounds. This is done in Figure 6.8. Now we can push the sampling

GEN SETGen
ReV Gen? State
Register
£ | Reg
SCHNORR SETScherrr
Schnorr?

CoV | Commit
to vote
HASH, SETHash
- Hash'

Figure 6.8: OVN with state as a package

to the bottom of each round separately and thus idealize by parts. This is closer to
what actually happens in the SSProve formalization for maximum ballot secrecy in
the paper.

150 CHAPTER 6. CRYPTOCONCERT

The next step is then to split the state into parts by making a store for each value
in the state; see Figure 6.9. Doing this allows us to look at a combination of parties
running the protocols with different interleavings. Whereas we assumed the state was
given before, thus generalizing over other parties’ effect on the state. The proof here

GEN SET
GET

Register SCHNORR SET
SET
GET 2‘ K,
GET i
TTser T 1 —
K,
— GETy; tkp, gt vi
HASH SET N
Hash {| Kcommit;
CoV | Commit
" to vote | 1.SET N
Ko
SET N
{ Kvote
GET
GETy, 1, ¢
CaV Cast
vote CDS SET N
DS Kor,
GET
GET
GETcommit.yi,vote,,or, “
LY Tally
SET \
GET (Kta11y

Figure 6.9: Maximum ballot secrecy

will then go by idealizing the composition of running the first round of each party,
followed by running the second round of each party, and so on. Thus, we can focus
on a round at a time. Furthermore, the idealization for any party is symmetric and
independent (in a round), allowing us to reuse the argument for idealizing a single
party. The modular SSP version of the OVN game is given in Figure 6.10, again
split into the rounds. The ideal game just sets the values of the key stores at random,
thereby requiring us to show the values stored are indistinguishable from randomly
sampled ones.

The Technical Details

Since the game can be modularized by splitting it into rounds, we can reason about
how to idealize each round separately.

6.6. MAXIMUM BALLOT SECRECY - ALTERNATIVE IN SSP STYLE 151

GET | & J

RgV | Register SET ;
vote Kap

SET

SET
& K,
GET,, tpi . GET e
HASH SET o ‘ SET N
Hash - Klomnss
SET
g K

1
| Kiarny

i

: o
| Kiany

Figure 6.10: Modular version of OVN

Register Vote

We start with the register vote round and idealize it in steps; see Figure 6.11.

Register
vote”

SET
GEN

GET

SCHNORR =
Schnorr?

SET

RgV

GET
GET

ReV

‘
() 0
K2,

Register
vote’

(c) Idealize the Schnorr protocol (d) Idealize the value store
RegV | Register | | SET ; ReV | Register | | SET
vote! ‘ Kip vote!

SET

- - SET
GET o %0 GET A«
GET 8 GET g

(e) Idealize the round (f) Idealize the value store

Figure 6.11: Maximum ballot secrecy - register vote

We start by idealizing the value store for key generation, then we idealize the Schnorr
protocol, then finally the value store. We use the discrete log (DL) assumption to
idealize the value store for g*. But first, we define the value store Kﬁ v EYV, see
Figure 6.12. For the Schnorr protocol (see Figure 6.1), the code uses the value stores;
see Figure 6.13. We can now define a real and ideal package for all parties in the OVN

152 CHAPTER 6. CRYPTOCONCERT

Kb:vev
SETY(x) SET!(_) GET,
ov < get, ov < get, oy < get,
if is_none ov if is_none ov match ov
xsV | none = fail
put, x put, x | some v = ret v
fi fi

Figure 6.12: Value store

schnorr? schnorri1
h GETgxl- h GETgxi
m < GET,, 74824
r<s$7Zg C+$ 2y
—g ?
ues o
¢ J(g,h,u) h
e comadr SET 4y, (u,¢,2)
SET 4y, (1, ¢,2)

Figure 6.13: The Schnorr protocol using the value stores

protocol. By indexing these two packages using a Boolean b, with 0 representing real
and 1 representing ideal, resulting in the following security game

)= schnorr’ o (Kfl ® Ky ®kapi).

schnorr(x,zkp

We prove the security of the game by idealizing the parts step by step by

GO

— 0 0 0
schnorr (x,zkp) = SChnorr; o (Ky, ® Kgi @ Ky)

~ schnorr’ o (lel ® Kgi @ ngpi)

1
~o schnorr o (K,:l. ® Kgri ®ngp,-)
~ schnorr,-1 o (K;,. ® Kei ® Kzlkpi>
—G!

schnorr(x,zkp)*

To idealize the Schnorr protocol, we do not need to idealize the public key. After ide-
alizing the Schnorr protocol, we can idealize the value store for it, as the requirement
of value being indistinguishable from randomness is now true. We assume the discrete
log is hard; thus, we assume the existence of the security game in Figure 6.14. We
can extend the definition to a game that includes the value store

Gl gy = d17 0 (Kyy ® Kpv,).

gl

6.6. MAXIMUM BALLOT SECRECY - ALTERNATIVE IN SSP STYLE 153

a1y a1}
xiéi-Zh xiéiizq
SETy,(x;) SETy(x:)
h<+$%
SETgx (%) SETg (h)

Figure 6.14: The discrete log game

Since the discrete log game is only assumed secure up to a (negligible) bound of &,
we get the same bound when including the value store

GO

0 0
ar(g) = dli© (Ky, @Ky

~e d1} o (K, @ K2)
~0 d1] o (Ky ® K;x,.)
_ 1

= Gai(gn)-

This enables us to define the registration round as the code in Figure 6.15. We combine

register;
dl;
schnorr;

Figure 6.15: The registration round code

the registration round with the above packages to get a security game for the first
round as

Gl;egister,. = register;o (schnorr’! ®d1?)o (Kfi ® ng,. ® KZCPI_).
Reusing the security games from above, we can step-by-step prove the security of the
round. Each application of the smaller security games requires us to isolate the game;

however, this is a trivial exercise, using associativity and commutativity rules. We
thereby get the security proof

Ggegimr[— register;o (schnorr? ®d1?)o (Kg. ®K§x,— ®K?kpi)
Gsf(_:\}_l‘norr . 1 0 1 0 1
~o register;o(schnorr; ®dl;)o (K, @Ky @Ky,)
G
~¢ register;o (schnorr! ®d1})o (K;l_ ®K;xl- ®Kzlkp,-)
=G!

register;*

154

Commit to Vote

CHAPTER 6. CRYPTOCONCERT

Next we repeat this process for the commitment round. We start by making an
illustration of the security proof; see Figure 6.16.

’i

GETy akpgt v

1
'_’
1
Ko
0
Kiote,

—i 5]
X!
— R

GETy, s g v

SET

HASH

Figure 6.16: Maximum ballot secrecy - commit to vote

Now let us look at the game for each of the parts. We start by looking at g” (see
Figure 6.17), which assumes the value is randomly distributed, which is the case if
there are two honest parties. It further assumes the value of y; is hidden using the
discrete log assumption as discussed for the single instance in the paper. We define

6.6. MAXIMUM BALLOT SECRECY - ALTERNATIVE IN SSP STYLE 155

unif ormgi unif orm}l,l_
i—1

oL H GET,y, h+s¥
j=0 SET (h)

n
p2+ [] GETy
j=itl
gyi +“— ﬂ
P2

SET,i (g)

Figure 6.17: Code for g, similar to DL

the security game for g* for each party as

i—1

n
Ggy,- = uniformlyji o (@Kng ® ® Kng ®K§Yi> .

j=0 j=itl

This introduces the extra dependence of v in the bound, as we assume the randomness
of y;. This assumption could possibly be proven by requiring two of the key stores
to be idealized, thus ensuring the randomness of the value by DL. The proof goes as
follows:

i—1 n
Ggy[= uniform(y)l_ o <® Ky ® ® K ®K§vi>
j=0 j=itl
i—1 n
~ ; ! , y 0
~y uniformy, o ®Kgx, ® ® Ky @ Koy,
j=0 j=itl
i—1 n
0 uniform;i o ®Kgx,- & ® Kgx,- ®K&1yi
j=0 j=itl
= G;yi .
For vote we use the Decisional Diffie-Hellman assumption; see Figure 6.18 for the
code. The game for this code is as expected,

GP .o i=votelo (K;y,- ®le,. XKy, ®Ké’otei) .

The proof is straightforward, but it adds a factor to the security bound for applying
Decisional Diffie-Hellman (DDH). It proceeds by

Ggote = VOte? © (Kgl-“i ® K)gi ® KVi ® K\(f)ote,-)
rg vote; o (K @ Ky © Ky, © Koge,)

0 VO‘l;e,-1 o (Kglyi & K;i & Kv,- ® K\}'ote,-)

156 CHAPTER 6. CRYPTOCONCERT

vote! vote;
g GET gy, 7487y

X; ¢+ GET,, SETyote; (£°)
v < GET,,

vote; ¢« ghihi . g¥i

SETyote, (VOteE;)

Figure 6.18: Code for computing the vote

= G\llote :

The vote package could be split into two packages, namely a DDH package and a
package showing that multiplying a random group element by the vote and publishing
it does not reveal the vote, as shifting the distribution by one is still a uniform
distribution. However, for simplicity we just combine the two packages here. The
code for committing to the vote is in Figure 6.19. It assumes we are working in the

commit? commit}

vote; <= GETyote, 2482
commit; <— s€(vote;) SETcommit,(2)

SET commit; (commit;)

Figure 6.19: Commit code

random oracle model. Thus, we also introduce an additional bound y to account for
this assumption. The game for the commit code is
Gt

e -2 b b
commit - = commit; o (Kyote, ® K,

commiti) ’

and the security proof is

0
Gcommit

.0 0
= commit; o (Kyote; ® Kcomnit,)

~ 1 1 O
Ry commit; o (Kvote,- ®Kcommit,-)

~ syl 1

~p commit; o (Kvote,- ®Kcommit,-)
_ 1

- Gcommit .

We can now write up the full commit to vote round; see Figure 6.20. The security
game is again each part and a composition of the dependencies defined as

Gﬁomit vote; = commit_vote;o (unif ormf[_ ® votef’ & commitf’) o

i—1 n
<®Kgx.i ® ® Kgx-/ ® Kgyi ® Kx,- ® KVi ® K\lrjote,- ® Kgonunit,-) .
j=0 Jj=i+l

6.6. MAXIMUM BALLOT SECRECY - ALTERNATIVE IN SSP STYLE 157

commit_vote;

uniformy,
vote;

commi t;

Figure 6.20: Commit to vote round

The proof again builds on the security proof for the parts. Applying the modular
proofs requires doing rewrite operations to isolate the games as described for the
register vote round. The proof for the commitment round follows

G nmit vote; = COmmit_vote;o (uniform;)i ®@vote) ® commit))o
i—1 n
0 0
<®Kng ® ® Kgx.f ® Kgyi ® Kxi ® KVi ® Kvotei ® Kgommit,-)
j=0 j=itl
Gyi 1 0 0
~y commit_vote;o (uniformy[_ ®vote; ® commit;)o

i—1 n
< ® Kng ® ® Kng- ® K;yi ® Kxi ® KVI ® K\(f)ote,' ® Kgommiti>
=0 j=it1

Gyote . . 1 1 -, 0
~X¢ commit_vote;o (unlformyl, ®vote; ® commit;)o

i—1 n
<®Kg"j & ® Kg"j ® K;yi ® Kxi ® KVi ® K\}’ote[® Kgommit;>
j=0 Jj=i+l

Geommit . . 1 1 s a1
Ny commit_vote;o(uniform; ®vote; ® commit;)o

i—1 n
(®Kng X ® Kgx.f ® K;yi ® Kxi ® KVi ® Kx}otei ® Kgommit,-)
=0 j=it1
=G!

commit_vote;*

Cast Vote

We present the construction and idealization of the cast vote round. Again, we start
with the illustration for the proof; see Figure 6.21. In this round we publish the vote
and we do the CDS proof. Thus, we are only missing the definition and security game
for CDS, as we can simply move the vote to a public value store. The code for CDS is
in Figure 6.22. The security game is straightforward to define

G5y :=CDSP o (K,?i ® Kgxi QK ® Kcl:)Ds,»)-

The proof builds on the proofs for CDS, but otherwise it progresses without any
surprise,

GgDS = CDS? © (K)(c),« ® Kﬁn ®K), ® Kc(:)Ds,«)

158 CHAPTER 6. CRYPTOCONCERT
. GET . GET
GET F Kiote,
GET
CaV cht(GET CaVv Ca:etl
GET A GET ‘ @
Figure 6.21: Maximum ballot secrecy - Cast vote
CDS} (x,y) CDS; (x,y)
Xi GET,, h < GET g
h GETgy ¢ sy
/
v; ¢ GET,, d,nr s
assertx =g Ay="h'.g" dr < d
Vi = 0 Vi = 1 T
ry < r
w,r2,dy <87y w,r1,dy <82y di—c—d
X<+ gh x<g" "4
. m ap g x4
y < hY y«h"-g
v by k" -yh
ap < g aj g -x p
w ay <+ g7 - x®
b1+ h by < h" ,ydl 8 .
2y w y\"
a < g~ X a g by« K22
y d> 8
w
bzehrz' <g) b2<_h SETCDS ((a17b17a27b2)7c7(r17d17r27d2))
ce () c ()
dy+—c—dy dy <= c—di

r<—w—m-d;

rzewfm~d2

SETcos((ar,b1,a2,b2),¢,(r1,dy,r2,d2))

Figure 6.22: CDS code

~% CDS} o (K? ® Kgx,- ® Ky, @ Kgps,)
~ CDS,-1 o <K)(C)z &® Kgxi X Kv,- ®KéDSi)

6.6. MAXIMUM BALLOT SECRECY - ALTERNATIVE IN SSP STYLE 159

_ 1
- GCDS .

We now have everything to define the cast vote round, as it is just running CDS, the
definition is
Gt

ee_ (b
cast; ** GCDS,-'

The proof of the security game is just the security proof for CDS.

Tally

We can now define the tally round, which is only computation. The SSP security game
illustration for the tally round is in Figure 6.23. The code for the tally round can be

N
N k!
—{ Keany

Figure 6.23: Maximum ballot secrecy - tally

found in Figure 6.24.

The Full Proof - Combination of the Parts

Now we have the definitions for each of the rounds. This allows us to define the game
for the full OVN protocol. First we define the code in Figure 6.25. The security game
is
n
Ghyy = 0VNo ® ((registeri o (schnorr? @ d1?)
i=0
® commit_vote;o (uniformly’i ®vote? ® commit?) ®CDS?)

160 CHAPTER 6. CRYPTOCONCERT

tally

n
gtally — HGETvote./
=0

n
tally = Hj. (g = gB)
=0

SETtany(tal ly)

Figure 6.24: Tally round code

n
© (K)[;, ® kap,‘ ® ®Kng ® Ké}fyi ® Kllzj, by K\}?otei & Kf:?ommit,- & KéDS,-)))
j=0

and finally, we get the full security proof for maximum ballot secrecy

n
GOy = 0VNo (09 ((registeri o (schnorr? ®d1?)
i=0
. . . 0 0 .. 0 0
® commit_vote;o (uniform, ®vote; ® commit;)® CDS;)

n
0 0 0 0 0 0
© <Kxi ® szp,- ® ®Kng ® Kg"i X Kl(/), ® K\(f)ote,- X Kcommit,- ® KCDS,-))
j=0

n
GCaS
~o OVNo ® <(registeri o (schnorr? ®d1?)
i=0
® commit_vote;o (uniformgi ®vote) ® commit!) ®CDS))

n
© (K)(C)l ® K?kpi ® ®K§Xj ® Kégl ® KI(J), ® K\(I)ote,- @ K(?ommit,- ® KéDS,-))
j=0

Gre ister "
~ne OVNo ® ((registeri o (schnorr, ®d1})
i=0
® commit_vote;o (uniform;)i ®vote) ® commit?) ®CDS))

OVN

register; VieO..n
commit_vote; Vi€O0..n
cast; VieO.n

tally

Figure 6.25: Full protocol code

6.7. MODIFICATIONS OF IMPLEMENTATION 161

n
o (KJ,. ® K, @ QK @ Ky @K} @ Kore, ® Koommse, @ KéDs,.>)
j=0

Gcommi vote "
“n-(w:htw) OVNo ® <(regi ster; o (schnorr; ® ail)
i=0
® commit_vote;o (uniform}l,’_ ®vote, ® commit])®CDS})

n
(K K @KL, . KL K K oK)
j=0
=Gl
OVN-

This gives us the same security bound of € + v 4+ { + v per party as in the paper. As
long as this is a negligible probability, then doing it any polynomial amount of times
is still negligible and thus secure.

6.7 Modifications of Implementation

The OVN protocol can also be improved for use as a smart contract. Here, the focus
is the cost per party to participate in the protocol. Currently, the validations are done
by each party. However, since we trust the blockchain, each party can prove their own
public values valid. This will save a factor of n. Furthermore, we can add a round to
the protocol for computing the reconstruction key g” for each party. Doing this as a
linear scan, instead of having each party do it, also saves a factor of n. Alternatively,
one can batch the computations in blocks of size k, and then each party only needs to
do around (n/k) +k — 1 work instead of the current n for the reconstruction key. These
two solutions do, however, have a tradeoff in that they increase the size of the contract
state. The batching trick exploits the ordering of the computations on the blockchain,
which might make internal optimizations of the blockchain less efficient, which could
increase the cost. The computation of the final tally could also be done off-chain, and
the result published to the blockchain, which checks that [T, vote; = g These
modifications to the OVN protocol could make it run in constant time for each party,
though using a linear amount of space.

Chapter 7

Related Work

We will introduce some alternative projects and tools within the fields of formal
guarantees for Rust code and verification of cryptography. We start by presenting some
Rust projects, then we describe some other projects doing cryptographic formalization.
Finally, we will talk about ongoing efforts to collaborate and widen the field.

7.1 Formal Verification in Rust

We will look at related work within high-assurance cryptography with a focus on Rust
tools and frameworks. We will also introduce alternatives to the frameworks we have
presented and highlight the differences and the reason we choose the tools we use for
the type of verification we have done above.

Formal Semantics of Rust

Rust is a very promising language with strong guarantees with a focus on allowing
multiple coding paradigms. Rust programmers, tools and projects take many of these
guarantees as a given, however, Rust does not have a formal semantics. This means
that these assumptions might not hold. To remedy this projects have been started to
define or verify semantics of parts or the entirety of Rust. We will present some of
these efforts here.

The aim with the RustBelt project [57] is to formally investigate the safety claims
of Rust. Thus, trying to improve on the surface documentation of unsafe behavior
found in the Rustonomicon [89].

The RustHorn paper [71] introduces a translation of Rust programs into constraint
Horn clauses (CHC), where program verification can be done formally. The project
relies on the strong invariants of the Rust type system to model the behavior of stateful
Rust code with first-order logic.

RustHornBelt [70] is the combination of these two projects, ensuring the sound-
ness of the RustHorn translation and models. This allows one to do machine-checked
proofs of safety and correctness for Rust code.

163

164 CHAPTER 7. RELATED WORK

The focus of this thesis is on a smaller safe subset of Rust. The reason we only
want to support a smaller subset of Rust is to have obviously correct translations
for simple implementation. Most cryptographic primitives and protocols can be
implemented in the Hax subset, for which we can use simpler verification methods
and ensure stronger guarantees. We still want a formal semantic of Rust (or at least the
Hax subset). So ensuring we agree with this work on the Hax subset is also important.

A project that tries to capture the essence of (surface-level) Rust is Oxide [96, 97].
It makes a hierarchical description with increasing expressibility of the semantics
of Rust. A representation of safe Rust is Oxidey, which is then extended with
abstractions implemented using unsafe code. New levels are defined when there are
observationally equivalent programs in Oxide, that are not observationally equivalent
in Oxide, ;. This allows one to describe features and optimizations based on the
abstraction level.

This approach closely mirrors the Hax approach of defining the language as a
feature set. The current features of Hax seem equivalent to Oxide;; however, no
formal connection exists.

The verify Rust std lib project' has posed a number of challenges, which aims
at verifying parts of the standard library for Rust. The tools currently being used
for this are ESBMC (GOTO-Transcoder)?, Flux [64], Kani [95], and VeriFast for
Rust [39, 53].

The verification of the standard library should produce models for the data struc-
tures and functions, which can simplify proofs about Rust code. However, rewriting
these models for all proof assistants and tools that want to proof things about Rust
might introduce errors or complexity. Our work on the annotated core library is an
attempt at fixing this problem but is less formal and only for the core library.

The goal with making the semantics explicit is to allow formalization of guarantees
and trust in the correctness and soundness of Rust. Another part to this is testing
and documentation, which ensures Rust qualifies to be used for critical systems.
Ferrocene®* is a toolchain for using Rust in safety-critical environments. It has
qualifications in accordance with ISO 26262 (ASIL D), IEC 61508 (SIL 4), and IEC
62304. As part of the development, the Ferrocene language specification’ (FLS) was
made and later adopted by Rust.

These projects show that the community is putting a strong effort into fully
formalizing the semantics of Rust, and we can see the translation of Hax as another
semantic for the subset of Rust that Hax supports. Ensuring these semantics align will
allow us to formalize the translation done by Hax and other similar tools.

Thttps://github. com/model-checking/verify-rust-std
Zhttps://github.com/rafaelsamenezes/goto-transcoder
3https://ferrocene.dev/en/
“https://github.com/ferrocene/ferrocene

Shttps://public-docs. ferrocene.dev/main/specification/index.html

https://github.com/model-checking/verify-rust-std
https://github.com/rafaelsamenezes/goto-transcoder
https://ferrocene.dev/en/
https://github.com/ferrocene/ferrocene
https://public-docs.ferrocene.dev/main/specification/index.html

7.1. FORMAL VERIFICATION IN RUST 165

Verification of Unsafe Rust

Sometimes Rust is going to call external tools or break from the intended information
flow or security guarantees. Usually these deviations are done to optimize performance
or interact with a larger system, or simply implement functionality not directly possible
in Rust. This is a necessity of system-level programming language; however, we still
want to ensure the correctness of this possibly unsafe behavior.

Having a formal description of the language to be analyzed, like what is described
in the previous section, is very useful. MiniRust® [55] tries to carve out the core
language of Rust. It expresses all the unpleasant unsafe behavior in Rust but is
executable, e.g., there is an interpreter; however, it does not come with the normal
conveniences of Rust, like a concrete syntax. Thus, writing code directly in MiniRust
is not intended. Specr lang exists as a meta language. MiniRust is still not complete;
however, it is another direction for specifying the undefined behaviors of Rust by
minimizing the formalization surface. The focus of MiniRust is the operational
semantics of Rust; thus, the MiniRust spec is written as an interpreter. MiniRust could
become a semantic used by the tools of this section, serving the same purpose as the
projects of the last section, but with a focus on unsafe Rust.

A tool for verifying the behavior of Rust programs is Kani [95], which uses
model checking to analyze Rust programs and focuses on verifying unsafe Rust
programs. Kani can check memory safety properties and some runtime errors (index
out of bounds, panic, etc.) and unexpected behavior (arithmetic overflow), as well as
user-defined assertions.

Another tool is Miri’ [56] a Rust interpreter, which can detect if code triggers
undefined behavior. It has been used to find bugs in the Rust standard library. MIRAI®
like Miri is an interpreter for the mid-level intermediate representation (MIR). It
is intended to be used as a static analysis tool for Rust, i.e., to verify correctness
properties without having to do anything extra.

Verus [63] is another tool for verifying correctness. It uses static checking to
validate user annotations. Verus supports an ever-increasing subset of Rust, improving
on feedback from the Rust type checker.

The frameworks we have presented, along with Hax, currently are not focusing
that much on unsafe code as well as using model checking and static analysis. Thus,
connecting Hax with these tools could speed up the verification process, though these
tools would not help with verifying security properties, only correctness.

Verification Frameworks and Tools

Aeneas [51] has the same frontend [50] as Hax but goes to MIR instead of (T)HIR.
Aeneas transforms Rust code into a pure A-calculus and generates code in a similar
selection of backends (F*, Rocq, LV3N, Viper, Why3) to Hax.

6h‘ctps ://github.com/minirust/minirust
"https://github.com/rust-lang/miri
Shttps://github.com/endorlabs/MIRAI

https://github.com/minirust/minirust
https://github.com/rust-lang/miri
https://github.com/endorlabs/MIRAI

166 CHAPTER 7. RELATED WORK

Gillian-Rust [5] is an approach to do end-to-end verification building on the
Gillian platform [42, 67] that can reason about type safety and functional correctness
of unsafe code. Gillian-Rust is also linked with Creusot to get a strong tool that can
verify a lot of real-world code with minimal annotations while still allowing the use
of a strong annotation system to guide the automated proofs.

Using Verifast [53] for Rust [39] allows one to verify unsafe code is not exhibiting
undefined behavior. Verifast for Rust has also been used in formalizing the Rust
standard library.

Prusti® [4] is a compiler plugin, which does a number of checks after the Rust
compiler’s type checking pass. It works for an expressive subset of safe Rust. Prusti
is built on top of Viper.

For Hax, we do the verification separate from the compilation, but still after the
Rust compiler’s type check. Results shown by Prusti could also be shown by F* and
Rocq using Hax, as the model we use requires proving, e.g., panic freedom. Adding
Prusti to the Hax pipeline and ensuring obligations are generated for bugs caught with
Prusti could help with showing the correctness of the Hax framework.

Viper'® [38] is a static verification infrastructure based on separation logic. It
allows one to build automated verifiers (like Prusti). and has been used for Go, Java,
Python, Rust, and many others. It generates and solves verification conditions and
validates a symbolic execution using an SMT solver.

Having an intermediate language with strong and generalized tools for verification
is the same philosophy as Hax. However, the goal of the intermediate language of
Hax is to serve as a common input for multiple tools instead of the common target.

StableMIR'">'? aims to become the public interface of the Rust compiler for
analysis tools. It is intended to be a stable target, whereas the internal representation
of the Rust compiler might fluctuate more.

The work we have done has been focusing on surface Rust or THIR. However,
the goal of stabilizing an input for tools is important for ensuring multiple tools can
collaborate.

Flux [64] is an implementation of liquid types for Rust. Flux adds refinement
types to allow for verification of imperative safe Rust.

In Hax we achieve something similar by adding refinement annotations, which get
translated by the backends; thus, the refinements are handled by the proof assistants.
However, this is very limited, whereas full liquid types can push feedback earlier in
the pipeline while possibly simplifying the readability over using annotations.

‘http://prusti.org

10https ://www.pm.inf.ethz.ch/research/viper.html
Uhttps://github.com/rust-lang/project-stable-mir
IZhttps://hackmd.io/jBRkZLGAQL2EVgwIIeNMHg

http://prusti.org
https://www.pm.inf.ethz.ch/research/viper.html
https://github.com/rust-lang/project-stable-mir
https://hackmd.io/jBRkZLqAQL2EVgwIIeNMHg

7.2. CRYPTOGRAPHIC PROOF FRAMEWORKS 167

7.2 Cryptographic Proof Frameworks

We have used F*, ProVerif and SSProve to verify security properties, however, other
tools exists. We will present a few of these here.

Tamarin [9] is a symbolic verification tool that can find attacks on security proto-
cols or show their absence. The tool has been successfully applied to prove properties
about large protocols like TLS 1.3, 5G-AKA, Noise, EMYV, and Apple iMessage.

Squirrel [6] is another proof assistant dedicated to cryptographic protocols. It
follows the computationally complete symbolic attacker approach, i.e., it uses the
symbolic model; however, it gives computational guarantees.

DY* [13] is a tool for doing symbolic security analysis of protocols written in F*.
It can reason about unbounded loops, mutable recursive data structures, and low-level
details.

EasyCrypt [8] is another proof assistant for doing cryptographic proofs in the
computational model. It has many tools for doing cryptographic reasoning but lacks
tools for doing general math, though efforts are being made to fix this. SSProve benefit
from the extensive mathematical libraries already part of Rocq.

7.3 Crypto Proof Ladders

The Crypto Proof Ladders project'? is an introduction to the use of formal methods
for cryptography. This is done by building a collection of tutorials and examples in a
wide range of tools. Another goal of the project is to find possible gaps and places to
improve and allow cross community collaboration.

Bhttps://proof-ladders.github.io/

https://proof-ladders.github.io/

Chapter 8

Discussion

In Figure 8.1, we have made an overview of how the three frameworks (primitive,
protocol, and smart contract) look together. This is a merge of figures from the papers,
so for more details about the parts, see the relevant papers (i.e. Figure 1 in §3.2, Figure
1 in §4.3, Figure 2 in §5.2, and Figure 1 in §6.4).

Implementation

(Rust)
K Hax \

Frontend

v

Engine

v

Backend

NG -/

>
>

/ Rocq

~

(o]

SSProve

Libcrux

!

Jasmin

Test Verify

Figure 8.1: Combination of frameworks

-/

L—>

In Chapter 3, we introduce the Hax framework (the red part of Figure 8.1), which
enables us to translate primitives, protocols, and smart contracts written in Rust into a

selection of backends.

In Chapter 4, we show how to show security and correctness of cryptographic
primitives (the blue part of Figure 8.1 related to SSProve). We do this by writing an
efficient implementation of the primitive in the Hax subset of Rust or in Jasmin and

169

170 CHAPTER 8. DISCUSSION

then translating them into SSProve. In SSProve, we can show that the implementation
adheres to a specification written in Hacspec and again translated using Hax.

In Chapter 5, we show how to use multiple tools to verify different parts of a
protocol, both for security guarantees (the blue part of Figure 8.1)and runtime safety
(the part of Figure 8.1).

Finally, in Chapter 6, we show how to verify security (the blue part of Fig-
ure 8.1)and protocol correctness (the magenta part of Figure 8.1)of smart contracts
written in Rust.

Continuing this process, we can extend the tools and frameworks connected to
Hax to allow for more verification and automation. The work uses SSProve as state-
separating proofs (SSP), which helps with the modularity of the verification process;
however, the framework for doing the verification is general, and the concrete tools
could be replaced.

An important part of the verification done is that we are doing both formally
secure and also efficient implementations. We are not working on toy examples
but on realistic real-world examples. Ensuring that the Jasmin implementation of
AES actually adheres to the NIST specification using Intel instructions allows us to
plug in the efficient implementation instead of using an AES implementation written
in Rust. The use of TLS is also ever present, and having a secure implementation
is important. Furthermore, we ensure the implementation can actually run a small
internet of things (IoT) device using efficient primitives. The implementation and
its security and correctness proofs are modular and extensible; thus, adding features
does not require a re-formalization. The formalization of the paper proof for the key
schedule theorem does also have separate interest, as it can (partially) be reused for
other projects like MLS. Lastly, the formalization of the OVN protocol makes use of
common components that can be reused for formalization of a full election protocol
like ElectionGuard (EG). The protocol itself is also of use for doing boardroom
elections, and it could be tweaked to work for larger elections. Showing that we can
ensure the security and correctness of not only a voting protocol but also a smart
contract can be used as an argument for having stricter requirements for such crucial
software.

The work of this thesis helps to showcase the possibility to formalize efficient
primitives, write executable specifications, and prove the security, correctness, and
panic freedom of protocols. While we have been building these frameworks and
formalizing the example, other projects have pushed the semantics of Rust along with
tools for ensuring correctness of unsafe Rust code. We should incorporate these tools
and theories into the frameworks to allow for verification of more advanced primitives
and protocols and the use of external components. Furthermore, applying the frame-
works to validate more protocols is important to further push verified software and
executable specifications into standards and cryptographic libraries. Our work on TLS
has been acknowledged in Project Everest [14, 88], showing that these formalizations
do have an impact on the community.

Another direction we have pushed, in this work, is to use Hax as a collaborative
tool, which allows multiple tools to contribute their individual strengths to the for-

171

malization of a common implementation. Making it easier to extend Hax by building
a common proof language and/or standard library (like the annotated core) further
encourages other tools to hook into Hax. This also aligns very well with the Crypto
Proof Ladders, which was started at the latest HACS workshop.

Chapter 9

Future Work

In this chapter we will summarize some of the possibilities for future work observed
paper sections. We will also give a broader description of future projects and what
tools or techniques remain to be improved to make high assurance cryptographic
software (HACS) the standard and not something only for very critical code.

9.1 Extensions to the Work of the Papers

Increasing the trust in Hax as a tool by using more static analysis, testing, verification
and projects, both for internal code, but also to validate the translation. Stabilizing the
backends and ensuring they all have (large) verification libraries for common libraries
especially the core and standard libraries of Rust.

Expanding the example libraries of Hacspec and Libcrux, to allow for verification
of more protocols using efficient primitives.

9.2 Larger Trends and the Field as a Whole

A general trend in the formalization community is not formally verifying their own
formal verification tool. This usually boils down to getting a usable product faster,
allows for earlier verification, which is the goal of the tool. However, this is usually
the same argument everyone else use, for now using formal methods. Thus, we should
employ all the tools and methods on the code bases we are using for the development
as well.

I see many very useful tools being developed for Rust. However, combining these
tools are not always trivial. The oxide project tries to classify surface Rust into a
hierarchy of abstractions, however, not all tools fit into one of these, so having more
fine grained definitions could also be very useful.

Especially for formalization of cryptographic primitives and protocols there have
been many tools developed for solving specific problems. Having a way to dispatch
the goals to these tools as part of a larger proof effort would be very useful. However,
this requires not using contradicting assumptions, such that composing the proofs does

173

174 CHAPTER 9. FUTURE WORK

not foundationally break the axiomatic system. A step towards this goal is the efforts
of the cryptographic proof ladder, which tries to understand how different tools solve
different tasks by making a large collection of example solutions to cryptogrpahic
problems. The next step is to figure out how the tools can collaborate. This could
require defining common languages or interfaces between tool.

Bibliography

[3]

[5]

[6]

[7]

Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nicolas
Tabareau. Towards Certified Meta-Programming with Typed Template-Coq. In
LNCS, volume 10895, pages 20-39. Springer, July 2018. doi:10.1007/978-
3-319-94821-8_2. (pp. 47 and 77).

Carlo Angiuli and Daniel Gratzer. Principles of Dependent Type Theory. https:
//www.danielgratzer.com/papers/type-theory-book.pdf or https:
//carloangiuli.com/papers/type-theory-book.pdf, 2025. (pp. 9
and 10).

Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. ConCert: A Smart
Contract Certification Framework in Coq. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, January
2020. doi:10.1145/3372885.3373829. (p. 5).

Vytautas Astrauskas, Peter Miiller, Federico Poli, and Alexander J. Summers.
Leveraging Rust Types for Modular Specification and Verification. In Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), vol-
ume 3, pages 147:1-147:30, 2019. doi:10.5281/zenodo.3363914. (p. 166).

Sacha-Elie Ayoun, Xavier Denis, Petar Maksimovié, and Philippa Gardner. A
Hybrid Approach to Semi-automated Rust Verification. Proc. ACM Program.
Lang., 9(PLDI), June 2025. doi:10.1145/3729289. (p. 166).

David Baelde, Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos, and
Joseph Lallemand. The Squirrel Prover and its Logic. ACM SIGLOG News,
11(2):62-83, 2024. doi:10.1145/3665453.3665461. (p. 167).

Manuel Barbosa, Karthikeyan Bhargavan, Franziskus Kiefer, Peter Schwabe,
Pierre-Yves Strub, and Bas E. Westerbaan. Formal Specifications for Certifiable
Cryptography. In NIST Workshop on Formal Methods within Certification
Programs (FMCP 2024), 2024. (pp. 20 and 53).

Gilles Barthe, Frangois Dupressoir, Benjamin Grégoire, César Kunz, Benedikt
Schmidt, and Pierre-Yves Strub. EasyCrypt: A Tutorial. In Foundations of
Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures, volume

175

https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1007/978-3-319-94821-8_2
https://www.danielgratzer.com/papers/type-theory-book.pdf
https://www.danielgratzer.com/papers/type-theory-book.pdf
https://carloangiuli.com/papers/type-theory-book.pdf
https://carloangiuli.com/papers/type-theory-book.pdf
https://doi.org/10.1145/3372885.3373829
https://doi.org/10.5281/zenodo.3363914
https://doi.org/10.1145/3729289
https://doi.org/10.1145/3665453.3665461

176

BIBLIOGRAPHY

8604 of Lecture Notes in Computer Science, pages 146-166. Springer, 2013.
doi:10.1007/978-3-319-10082-1_6. (p. 167).

David Basin, Cas Cremers, Jannik Dreier, and Ralf Sasse. Tamarin: Verification
of Large-Scale, Real-World, Cryptographic Protocols. IEEE Security & Privacy,
20(3):24-32,2022. doi:10.1109/MSEC.2022.3154689. (pp. 5 and 167).

Andrej Bauer. Realizability as Connection between Constructive and Com-
putable Mathematics. In Tanja Grubba, Peter Hertling, Hideki Tsuiki, and
Klaus Weihrauch, editors, CCA 2005 - Second International Conference on
Computability and Complexity in Analysis, August 25-29, 2005, Kyoto, Japan,
volume 326-7/2005 of Informatik Berichte, pages 378-379. FernUniversitat
Hagen, Germany, 2005. (p. 78).

Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, CCS °93, page 62-73, New York, NY,
USA, 1993. Association for Computing Machinery. doi:10.1145/168588.
168596. (p. 13).

Jean-Philippe Bernardy and Marc Lasson. Realizability and Parametricity in
Pure Type Systems. In Foundations of Software Science and Computational
Structures, pages 108—122, 2011. doi:10.1007/978-3-642-19805-2_8. (p.
78).

Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram Hosseyni,
Ralf Kiisters, Guido Schmitz, and Tim Wiirtele. DY*: A Modular Symbolic
Verification Framework for Executable Cryptographic Protocol Code. In 2021
IEEE European Symposium on Security and Privacy (EuroS&P), pages 523-542.
IEEE Computer Society, 2021. doi:10.1109/EuroSP51992.2021.00042. (p.
167).

Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Four-
net, Chris Hawblitzel, Cétdlin Hritcu, Samin Ishtiaq, Markulf Kohlweiss,
Rustan Leino, Jay Lorch, Kenji Maillard, Jianyang Pang, Bryan Parno,
Jonathan Protzenko, Tahina Ramananandro, Ashay Rane, Aseem Rastogi, Nikhil
Swamy, Laure Thompson, Peng Wang, Santiago Zanella-Béguelin, and Jean-
Karim Zinzindohoué. Everest: Towards a Verified, Drop-in Replacement
of HTTPS. In 2nd Summit on Advances in Programming Languages, May
2017. URL: http://drops.dagstuhl.de/opus/volltexte/2017/7119/
pdf/LIPIcs-SNAPL-2017-1.pdf. (pp. 6, 81, and 170).

Karthikeyan Bhargavan, Maxime Buyse, Lucas Franceschino, Lasse Letager
Hansen, Franziskus Kiefer, Jonas Schneider-Bensch, and Bas Spitters. hax:
Verifying Security-Critical Rust Software Using Multiple Provers. In Jonathan
Protzenko and Azalea Raad, editors, Verified Software. Theories, Tools and

https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1109/MSEC.2022.3154689
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1109/EuroSP51992.2021.00042
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf

BIBLIOGRAPHY 177

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Experiments, pages 96—119, Cham, 2025. Springer Nature Switzerland. doi:
10.1007/978-3-031-86695-1_7. (pp. 19 and 21).

Karthikeyan Bhargavan, Lucas Franceschino, Lasse Letager Hansen, Franziskus
Kiefer, Jonas Schneider-Bensch, and Bas Spitters. Hax - Enabling High As-
surance Cryptographic Software. Talk given at RustVerify’24, 2024. Ex-
tended abstract at https://github.com/hacspec/hacspec.github.io/
blob/master/RustVerify24.pdf. (p. 21).

Karthikeyan Bhargavan, Lasse Letager Hansen, Franziskus Kiefer, Jonas
Schneider-Bensch, and Bas Spitters. Formal Security and Functional Verification
of Cryptographic Protocol Implementations in Rust. Cryptology ePrint Archive,
Paper 2025/980, 2025. URL: https://eprint.iacr.org/2025/980. (p.
81).

C. Brzuska, Marc Fischlin, Nigel P. Smart, Bogdan Warinschi, and Stephen C.
Williams. Less is More: Relaxed yet Composable Security Notions for Key
Exchange. In International Journal of Information Security, volume 12, pages
267-297,2013. doi:10.1007/s10207-013-0192-y. (p. 148).

Chris Brzuska, Antoine Delignat-Lavaud, Christoph Egger, Cédric Fournet,
Konrad Kohbrok, and Markulf Kohlweiss. Key-Schedule Security for the TLS
1.3 Standard. In Advances in Cryptology — ASIACRYPT 2022, page 621-650,
Berlin, Heidelberg, 2022. Springer-Verlag. doi:10.1007/978-3-031-22963-
3_21. (p. 100).

Chris Brzuska, Antoine Delignat-Lavaud, Christoph Egger, Cédric Fournet,
Konrad Kohbrok, and Markulf Kohlweiss. Key-schedule Security for the TLS
1.3 Standard. Cryptology ePrint Archive, Paper 2021/467, 2021. URL: https:
//eprint.iacr.org/2021/467. (pp. 100, 105, and 106).

Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok, and
Markulf Kohlweiss. State Separation for Code-Based Game-Playing Proofs.
In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology —
ASIACRYPT 2018, pages 222-249. Springer International Publishing, 2018.
doi:10.1007/978-3-030-03332-3_9. (pp. 11, 12, 100, and 148).

Tej Chajed. Record Updates in Coq. In CogPL’21, 2021. URL: https:
//popl21.sigplan.org/details/CogPL-2021-papers/3/Record-
Updates-in-Coq. (pp. 46 and 77).

David Chaum and Torben Pryds Pedersen. Wallet Databases with Observers. In
Ernest F. Brickell, editor, Advances in Cryptology — CRYPTO’ 92, pages 89—
105, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg. doi:10.1007/3-
540-48071-4_7. (p. 118).

https://doi.org/10.1007/978-3-031-86695-1_7
https://doi.org/10.1007/978-3-031-86695-1_7
https://github.com/hacspec/hacspec.github.io/blob/master/RustVerify24.pdf
https://github.com/hacspec/hacspec.github.io/blob/master/RustVerify24.pdf
https://eprint.iacr.org/2025/980
https://doi.org/10.1007/s10207-013-0192-y
https://doi.org/10.1007/978-3-031-22963-3_21
https://doi.org/10.1007/978-3-031-22963-3_21
https://eprint.iacr.org/2021/467
https://eprint.iacr.org/2021/467
https://doi.org/10.1007/978-3-030-03332-3_9
https://popl21.sigplan.org/details/CoqPL-2021-papers/3/Record-Updates-in-Coq
https://popl21.sigplan.org/details/CoqPL-2021-papers/3/Record-Updates-in-Coq
https://popl21.sigplan.org/details/CoqPL-2021-papers/3/Record-Updates-in-Coq
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7

178

[24]

[25]

[28]

[30]

[32]

BIBLIOGRAPHY

Alonzo Church. A Note on the Entscheidungsproblem. J. Symb. Log., 1(1):40-
41, 1936. doi:10.2307/2269326. (p. 9).

Alonzo Church. An Unsolvable Problem of Elementary Number Theory. Ameri-
can Journal of Mathematics, 58:345-363, 1936. doi:10.2307/2268571. (pp.
)

Alonzo Church. Correction to A Note on the Entscheidungsproblem. J. Symb.
Log., 1(3):101-102, 1936. doi:10.2307/2269030. (p. 9).

Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, ICFP *00, page 268-279,
New York, NY, USA, 2000. Association for Computing Machinery. doi:10.
1145/351240.351266. (pp. 5 and 50).

Cyril Cohen, Enzo Crance, and Assia Mahboubi. Trocq: Proof Transfer for Free,
With or Without Univalence. In Stéphanie Weirich, editor, Lecture Notes in
Computer Science, volume 14576 of Lecture Notes in Computer Science, pages
239-268, Luxembourg, Luxembourg, April 2024. Springer Nature Switzerland.
doi:10.1007/978-3-031-57262-3_10. (p. 77).

Cyril Cohen, Enzo Crance, and Assia Mahboubi. Trocq: Proof Transfer for
Free, Beyond Equivalence and Univalence. ACM Transactions on Programming
Languages and Systems (TOPLAS), May 2025. doi:10.1145/3737283. (p.
77).

Joshua M. Cohen and Philip Johnson-Freyd. A Formalization of Core Why3
in Coq. Proc. ACM Program. Lang., 8(POPL), January 2024. doi:10.1145/
3632902. (p. 49).

Thierry Coquand and Gérard Huet. Constructions: A Higher Order Proof System
for Mechanizing Mathematics. In Bruno Buchberger, editor, EUROCAL ’85,
pages 151-184, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg. doi:
10.1007/3-540-15983-5_13. (p. 11).

Thierry Coquand and Gérard Huet. The Calculus of Constructions. Informa-
tion and Computation, 76(2):95-120, 1988. doi:10.1016/0890-5401(88)
90005-3. (p. 10).

Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of Partial
Knowledge and Simplified Design of Witness Hiding Protocols. In Yvo Desmedt,
editor, Advances in Cryptology — CRYPTO ’94, volume 839 of Lecture Notes in
Computer Science, pages 174—187, Berlin, Heidelberg, 1994. Springer Berlin
Heidelberg. doi:10.1007/3-540-48658-5_19. (p. 118).

https://doi.org/10.2307/2269326
https://doi.org/10.2307/2268571
https://doi.org/10.2307/2269030
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1007/978-3-031-57262-3_10
https://doi.org/10.1145/3737283
https://doi.org/10.1145/3632902
https://doi.org/10.1145/3632902
https://doi.org/10.1007/3-540-15983-5_13
https://doi.org/10.1007/3-540-15983-5_13
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/3-540-48658-5_19

BIBLIOGRAPHY 179

[34] H. B. Curry. Functionality in Combinatory Logic*. Proceedings of the National
Academy of Sciences, 20(11):584-590, 1934. doi:10.1073/pnas.20.11.584.
(p-9).

[35] Haskell Brooks Curry and Robert M. Feys. Combinatory Logic Vol. 1. North-
Holland Publishing Company, Amsterdam, Netherlands, 1958. (p. 9).

[36] Ivan Damgard. On X-protocols, 2010. URL: https://www.cs.au.dk/~ivan/
Sigma.pdf. (p. 115).

[37] Danny Dolev and Andrew Chi-Chih Yao. On the Security of Public Key
Protocols. IEEE Transactions on Information Theory, 29(2):198-207, 1983.
doi:10.1109/TIT.1983.1056650. (pp. 11 and 12).

[38] Marco Eilers, Malte Schwerhoff, Alexander J. Summers, and Peter Miiller.
Fifteen Years of Viper. In Ruzica Piskac and Zvonimir Rakamarié, editors,
Computer Aided Verification (CAV), pages 107-123, Cham, 2025. Springer
Nature Switzerland. doi:10.1007/978-3-031-98668-0_5. (p. 166).

[39] Nima Rahimi Foroushaani and Bart Jacobs. Modular Formal Verification of Rust
Programs with Unsafe Blocks, 2022. arXiv:2212.12976. (pp. 164 and 166).

[40] Abraham A. Fraenkel. Zu den Grundlagen der Cantor-Zermeloschen Mengen-
lehre. Mathematische Annalen, 86:230-237,1922. doi:10.1007/BF01457986.

(p. 10).

[41] Abraham Adolf Fraenkel, Yehosua’ Bar-Hillel, and Azriel Levy. Foundations
of set theory, 2nd Edition, volume 67 of Studies in logic and the foundations
of mathematics. North-Holland Publ., 1973. URL: https://www.worldcat.
org/oclc/185773710. (p. 10).

[42] José Fragoso Santos, Petar Maksimovié, Sacha-Elie Ayoun, and Philippa Gard-
ner. Gillian, Part I: A Multi-language Platform for Symbolic Execution. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2020, page 927-942, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3385412.3386014. (p.
166).

[43] Sebastian Graf. Verifying imperative programs using mvcgen. URL: https:
//hackmd.io/@sg-fro/BIR1lurP_xg. (p. 78).

[44] Niklas Grimm, Kenji Maillard, Cédric Fournet, Catélin Hritcu, Matteo Maffei,
Jonathan Protzenko, Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy, and
Santiago Zanella-Béguelin. A Monadic Framework for Relational Verification:
Applied to Information Security, Program Equivalence, and Optimizations. In
Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, page 130-145, New York, NY, USA, 2018.
Association for Computing Machinery. doi:10.1145/3167090. (p. 78).

https://doi.org/10.1073/pnas.20.11.584
https://www.cs.au.dk/~ivan/Sigma.pdf
https://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1007/978-3-031-98668-0_5
https://arxiv.org/abs/2212.12976
https://doi.org/10.1007/BF01457986
https://www.worldcat.org/oclc/185773710
https://www.worldcat.org/oclc/185773710
https://doi.org/10.1145/3385412.3386014
https://hackmd.io/@sg-fro/BJRlurP_xg
https://hackmd.io/@sg-fro/BJRlurP_xg
https://doi.org/10.1145/3167090

180

[45]

[46]

[53]

BIBLIOGRAPHY

Rust Team Types Working Group. A-mir-formality. URL: https://github.
com/rust-lang/a-mir-formality. (p. 46).

The Rust Team Traits Working Group. The Chalk book. The Rust Team, 2025.
URL: https://doc.rust-lang.org/reference/. (p. 46).

Shay Gueron. White Paper: Intel® Advanced Encryption Standard (AES)
New Instructions Set, 2012. URL: https://www.intel.com/content/
www/us/en/developer/articles/tool/intel-advanced-encryption-
standard-aes-instructions-set.html. (p. 60).

Philipp G. Haselwarter, Benjamin Salling Hvass, Lasse Letager Hansen, Théo
Winterhalter, Catalin Hritcu, and Bas Spitters. The Last Yard: Foundational
End-to-End Verification of High-Speed Cryptography. In CCP’24, pages 30—44.
ACM, 2024. doi:10.1145/3636501.3636961. (p. 61).

Arend Heyting. Intuitionism: An introduction, Studies in Logic and the Founda-
tions of Mathematics. North-Holland, 1956, 1971. (p. 9).

Son Ho, Guillaume Boisseau, Lucas Franceschino, Yoann Prak, Aymeric
Fromherz, and Jonathan Protzenko. Charon: An Analysis Framework for Rust,
2025. arXiv:2410.18042. (p. 165).

Son Ho and Jonathan Protzenko. Aeneas: Rust Verification by Functional Trans-
lation. Proc. ACM Program. Lang., 6(ICFP), 2022. doi:10.1145/3547647.
(pp- 5 and 165).

William Alvin Howard. The Formulae-as-Types Notion of Construction. In J. R.
Hindley and J. P. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus, and Formalism, pages 479-490. Academic Press, 1980. (p.
9).

Bart Jacobs, Jan Smans, and Frank Piessens. The VeriFast Program Verifier:
A Tutorial, August 2024. doi:10.5281/zenodo.13380705. (pp. 5, 164,
and 166).

Thomas Jech. Set Theory: The Third Millennium Edition, revised and expanded.
Springer Monographs in Mathematics. Springer, Berlin, 3rd edition, 2003. (p.
10).

Ralf Jung. Announcing: MiniRust, 2022. URL: https://www.ralfj.de/
blog/2022/08/08/minirust.html. (p. 165).

Ralf Jung. Miri: Practical undefined behavior detection for rust (keynote). In
Proceedings of the 19th ACM International Workshop on Implementation, Com-
pilation, Optimization of OO Languages, Programs and Systems, [COOOLPS
2024, page 1, New York, NY, USA, 2024. Association for Computing Machinery.
doi:10.1145/3679005.3695733. (p. 165).

https://github.com/rust-lang/a-mir-formality
https://github.com/rust-lang/a-mir-formality
https://doc.rust-lang.org/reference/
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
https://doi.org/10.1145/3636501.3636961
https://arxiv.org/abs/2410.18042
https://doi.org/10.1145/3547647
https://doi.org/10.5281/zenodo.13380705
https://www.ralfj.de/blog/2022/08/08/minirust.html
https://www.ralfj.de/blog/2022/08/08/minirust.html
https://doi.org/10.1145/3679005.3695733

BIBLIOGRAPHY 181

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rust-
Belt: securing the foundations of the Rust programming language. Proc. ACM
Program. Lang., 2(POPL), December 2017. doi:10.1145/3158154. (p. 163).

Franziskus Kiefer, Karthikeyan Bhargavan, Bas Spitters, and Manuel Bar-
bosa. HACSPEC: a gateway to high-assurance cryptography. Talk given
at RWC 2023, 2023. Video at https://youtu.be/1ah03de3k_07t=7, ex-
tended abstract athttps://github.com/hacspec/hacspec/blob/master/
rwc2023-abstract.pdf. (pp. 21 and 53).

Steve Klabnik and Carol Nichols. The Rust Programming Language. No Starch
Press, USA, 2018. (p. 13).

Steve Klabnik, Carol Nichols, and Chris Krycho. The Rust Programming
Language. The Rust Project Developers, 2025. URL: https://doc.rust-
lang.org/book/. (p. 13).

S. C. Kleene. On the Interpretation of Intuitionistic Number Theory. Journal of
Symbolic Logic, 10(4):109-124, 1945. doi:10.2307/2269016. (p. 78).

Andrey Nikolaevich Kolmogoroff. Zur Deutung der intuitionistischen Logik.
Mathematische Zeitschrift, 1932. doi:10.1007/BF01186549. (p. 9).

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe,
Yi Zhou, Jon Howell, Bryan Parno, and Chris Hawblitzel. Verus: Verifying Rust
Programs using Linear Ghost Types. Proc. ACM Program. Lang., 7T(OOPSLA1),
April 2023. doi:10.1145/3586037. (pp. S and 165).

Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. Flux: Liquid
Types for Rust. Proc. ACM Program. Lang., 7(PLDI), June 2023. doi:10.
1145/3591283. (pp. 164 and 166).

Xavier Leroy, Sandrine Blazy, Daniel Késtner, Bernhard Schommer, Markus
Pister, and Christian Ferdinand. CompCert - A Formally Verified Optimizing
Compiler. In ERTS 2016: Embedded Real Time Software and Systems, Sth
European Congress, Toulouse, France, January 2016. SEE. URL: https://
inria.hal.science/hal-01238879. (p.5).

Assia Mahboubi and Enrico Tassi. Mathematical Components. Zenodo, Septem-
ber 2022. doi:10.5281/zenodo.7118596. (p. 77).

Petar Maksimovié, Sacha-Elie Ayoun, José Fragoso Santos, and Philippa Gard-
ner. Gillian, Part II: Real-World Verification for JavaScript and C. In Alexandra
Silva and K. Rustan M. Leino, editors, Computer Aided Verification, pages
827-850, Cham, 2021. Springer International Publishing. doi:10.1007/978-
3-030-81688-9_38. (p. 166).

https://doi.org/10.1145/3158154
https://youtu.be/lahO3de3k_0?t=7
https://github.com/hacspec/hacspec/blob/master/rwc2023-abstract.pdf
https://github.com/hacspec/hacspec/blob/master/rwc2023-abstract.pdf
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doi.org/10.2307/2269016
https://doi.org/10.1007/BF01186549
https://doi.org/10.1145/3586037
https://doi.org/10.1145/3591283
https://doi.org/10.1145/3591283
https://inria.hal.science/hal-01238879
https://inria.hal.science/hal-01238879
https://doi.org/10.5281/zenodo.7118596
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1007/978-3-030-81688-9_38

182

[68]

[73]

[75]

BIBLIOGRAPHY

Per Martin-L6f. An Intuitionistic Theory of Types: Predicative Part. In H.E.
Rose and J.C. Shepherdson, editors, Logic Colloquium 73, volume 80 of Studies
in Logic and the Foundations of Mathematics, pages 73—118. Elsevier, 1975.
doi:10.1016/S0049-237X(08)71945-1. (p. 10).

Nicholas D. Matsakis and Felix S. Klock. The Rust Language. In Proceedings
of the 2014 ACM SIGAda Annual Conference on High Integrity Language
Technology, HILT ’14, page 103-104, New York, NY, USA, 2014. Association
for Computing Machinery. doi:10.1145/2663171.2663188. (p. 13).

Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer.
Rusthornbelt: a semantic foundation for functional verification of rust programs
with unsafe code. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI
2022, page 841-856, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3519939.3523704. (p. 163).

Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. RustHorn: CHC-
based Verification for Rust Programs. ACM Trans. Program. Lang. Syst., 43(4),
October 2021. doi:10.1145/3462205. (p. 163).

Ueli Maurer. Abstract Models of Computation in Cryptography. In Nigel P.
Smart, editor, Cryptography and Coding, pages 1-12, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. doi:10.1007/11586821_1. (p. 11).

Ueli Maurer. Constructive Cryptography - A New Paradigm for Security Defini-
tions and Proofs. In Sebastian Mddersheim and Catuscia Palamidessi, editors,
Theory of Security and Applications, volume 6993 of Lecture Notes in Computer
Science, pages 33-56, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-27375-9_3. (pp. 11 and 12).

Denis Merigoux, Franziskus Kiefer, and Karthikeyan Bhargavan. hacspec:
succinct, executable, verifiable specifications for high-assurance cryptography
embedded in Rust. Technical report, Inria, March 2021. URL: https://hal.
inria.fr/hal-03176482. (pp. 20, 21, and 53).

National Institute of Standards, Technology (NIST), Morris J. Dworkin, Elaine
Barker, James Nechvatal, James Foti, Lawrence E. Bassham, E. Roback, and
James Dray Jr. Advanced Encryption Standard (AES), 2001-11-26 00:11:00
2001. doi:10.6028/NIST.FIPS.197. (pp. 54 and 56).

Christine Paulin-Mohring. Inductive Definitions in the system Coq Rules and
Properties. In Marc Bezem and Jan Friso Groote, editors, Typed Lambda Calculi
and Applications, pages 328-345, Berlin, Heidelberg, 1993. Springer Berlin
Heidelberg. doi:10.1007/BFb0037116. (p. 11).

https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3462205
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-642-27375-9_3
https://hal.inria.fr/hal-03176482
https://hal.inria.fr/hal-03176482
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1007/BFb0037116

BIBLIOGRAPHY 183

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Rasmus Lerchedahl Petersen, Lars Birkedal, Aleksandar Nanevski, and Greg
Morrisett. A Realizability Model for Impredicative Hoare Type Theory. In
Sophia Drossopoulou, editor, Programming Languages and Systems, volume
4960 of Lecture Notes in Computer Science, pages 337-352. Springer, 2008.
doi:10.1007/978-3-540-78739-6_26. (p. 78).

Frank Pfenning and Christine Paulin-Mohring. Inductively Defined Types in the
Calculus of Constructions. In M. Main, A. Melton, M. Mislove, and D. Schmidt,
editors, Mathematical Foundations of Programming Semantics, pages 209-228,
New York, NY, 1990. Springer-Verlag. doi:10.1007/BFb0040259. (p. 10).

Amir Pnueli, Michael Siegel, and Eli Singerman. Translation Validation. In
Tools and Algorithms for Construction and Analysis of Systems, pages 151-166,
1998. doi:10.1007/BFb0054170. (p. 78).

Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, August 2018. doi:10.17487/RFC8446. (p. 81).

Mike Rosulek. The Joy of Cryptography. Online textbook, 2021. URL: http:
//web.engr.oregonstate.edu/~rosulekm/crypto/. (pp. 11 and 12).

Rust Project Developers. The Rust Reference, 2025. URL: https://doc.
rust-lang.org/reference/. (pp. 13 and 15).

Cole Schlesinger and Nikhil Swamy. Verification Condition Generation
with the Dijkstra State Monad. Technical Report MSR-TR-2012-45, Mi-
crosoft Research, April 2012. URL: https://www.microsoft.com/en-
us/research/publication/verification-condition-generation-
with-the-dijkstra-state-monad/. (p. 78).

Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. J. Cryptol.,
4(3):161-174, 1991. doi: 10.1007/BF00196725. (p. 116).

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Y ves Strub, Karthikeyan Bhar-
gavan, and Jean Yang. Secure Distributed Programming with Value-Dependent
Types. In Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming, ICFP *11, page 266278, New York, NY, USA, 2011.
Association for Computing Machinery. doi:10.1145/2034773.2034811. (p.
11).

Nikhil Swamy, Cétdlin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves
Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-
Béguelin. Dependent Types and Multi-monadic Effects in F*. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 16, page 256270, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2837614.2837655. (p.
11).

https://doi.org/10.1007/978-3-540-78739-6_26
https://doi.org/10.1007/BFb0040259
https://doi.org/10.1007/BFb0054170
https://doi.org/10.17487/RFC8446
http://web.engr.oregonstate.edu/~rosulekm/crypto/
http://web.engr.oregonstate.edu/~rosulekm/crypto/
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/reference/
https://www.microsoft.com/en-us/research/publication/verification-condition-generation-with-the-dijkstra-state-monad/
https://www.microsoft.com/en-us/research/publication/verification-condition-generation-with-the-dijkstra-state-monad/
https://www.microsoft.com/en-us/research/publication/verification-condition-generation-with-the-dijkstra-state-monad/
https://doi.org/10.1007/BF00196725
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1145/2837614.2837655

184

[87]

[95]

[96]

[97]

[98]

BIBLIOGRAPHY

Enrico Tassi. Elpi: an extension language for Coq (Metaprogramming Coq in
the Elpi AProlog dialect). In The Fourth International Workshop on Coq for
Programming Languages, Los Angeles (CA), United States, January 2018. URL:
https://inria.hal.science/hal-01637063. (p. 77).

Project Everest Team. Project Everest: Perspectives from Developing Industrial-
grade High-Assurance Software. https://project-everest.github.io/
assets/everest-perspectives-2025.pdf, 2025. (pp. 6, 81, and 170).

The Rust Team. The Rustonomicon. The Rust Team, 2024. URL: https:
//doc.rust-lang.org/nomicon/. (pp. 15 and 163).

The F* Development Team. Fx: A Verification-Oriented Programming Language.
https://fstar-lang.org, 2025. (p. 11).

The Rocq Team. The Rocq Prover. https://rocq-prover.org, 2025. For-
merly known as the Coq proof assistant. (p. 11).

A. S. Troelstra. Principles of Intuitionism. Springer Heidelberg, 1969. doi:
10.1007/BFb0080643. (p. 9).

Alan M. Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proc. London Math. Soc., 42(1):230-265, 1937.
doi:10.1112/PLMS/S2-42.1.230. (p.9).

The Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-
tions of Mathematics. https://homotopytypetheory.org/book, Institute
for Advanced Study, 2013. (pp. 9 and 10).

Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan Chong, and Adrian
Sampson. Verifying Dynamic Trait Objects in Rust. In Proceedings of the 44th
International Conference on Software Engineering: Software Engineering in
Practice, ICSE-SEIP 22, pages 321-330, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery. doi:10.1145/3510457.3513031. (pp. 5,
164, and 165).

Aaron Weiss, Daniel Patterson, and Amal Ahmed. Rust Distilled: An Expressive
Tower of Languages. CoRR, 2018. arXiv:1806.02693. (p. 164).

Aaron Weiss, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed. Oxide:
The Essence of Rust. CoRR, 2019. arXiv:1903.00982. (p. 164).

Ernst Zermelo. Untersuchungen iiber die Grundlagen der Mengenlehre 1. Math-
ematische Annalen, 65:261-281, 1908. doi:10.1007/BF01449999. (p. 10).

https://inria.hal.science/hal-01637063
https://project-everest.github.io/assets/everest-perspectives-2025.pdf
https://project-everest.github.io/assets/everest-perspectives-2025.pdf
https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/nomicon/
https://fstar-lang.org
https://rocq-prover.org
https://doi.org/10.1007/BFb0080643
https://doi.org/10.1007/BFb0080643
https://doi.org/10.1112/PLMS/S2-42.1.230
https://homotopytypetheory.org/book
https://doi.org/10.1145/3510457.3513031
https://arxiv.org/abs/1806.02693
https://arxiv.org/abs/1903.00982
https://doi.org/10.1007/BF01449999

	Abstract
	Resumé
	Acknowledgments
	Contents
	Overview
	Introduction
	Structure of Thesis and Overview of Chapters
	Motivation

	Background Theory
	Dependent Type Theory
	Interactive Theorem Provers (ITP)
	Computer-Aided Cryptography
	Rust

	Publications
	Hax: Verifying Security-Critical Rust Software using Multiple Provers
	Hax
	The Paper
	 Verifying Security-Critical Software
	 hax: methodology and Workflow
	 hax Engine: Transforming and Simplifying Rust Code
	 hax Backends: Translating Rust to Verifiable Models
	 Formal Models for Rust Libraries
	 Testing the Generated Models
	 Verifying Rust Applications with hax
	 Conclusion and Future Work
	Summary
	The Technical Details of the Rocq Backends
	The Annotated Rust Core Library
	Creusot
	QuickCheck/QuickChick
	Automation: SMT solvers, Hammers, and Large Language Models (LLMs)

	The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography
	Hacspec
	Advanced Encryption Standard (AES)
	The Paper
	 Introduction
	 Foundational End-to-End Verification from Specification to Efficient Implementation
	 Background & Technical Preliminaries
	 Hacspec & SSProve
	 Jasmin & SSProve
	 AES Example
	 Related Work
	 Future Work
	Summary
	The SSProve Backend of Hax
	The Dual Translation of SSProve

	Formal Security and Functional Verification of Cryptographic Protocol Implementations in Rust
	Transfer Layer Security (TLS 1.3)
	The Paper
	 High-Assurance Cryptographic Protocols
	 Methodology: Verifying Rust Code with hax
	 The TLS 1.3 Protocol
	 Bert13: Post-Quantum TLS 1.3 in Rust
	 Key Schedule Security with SSProve
	 Verifying the Protocol Code with ProVerif
	 Verifying Runtime Safety and Unambiguous Message Formats with F
	 Discussion
	Summary
	Details of the Security Proof for TLS 1.3 Key Scheduler

	CryptoConCert: A Framework for Secure Rust Smart Contract Verification, with an Application to Voting
	Properties of -protocols
	The Schnorr Protocol
	The Cramer-Damård-Shoenmaker (CDS) Construction
	The Paper
	 Introduction
	 Background
	 CryptoConCert
	 The Open Vote Network Protocol
	 Ovn Security Proofs
	 Self-Tallying in Concert
	 Evaluation
	 Related and Future Work
	Summary
	Maximum Ballot Secrecy - Alternative in SSP Style
	Modifications of Implementation

	Related Work
	Formal Verification in Rust
	Cryptographic Proof Frameworks
	Crypto Proof Ladders

	Discussion
	Future Work
	Extensions to the Work of the Papers
	Larger Trends and the Field as a Whole

	Bibliography

