
Proving security of TLS 1.3 protocol

Lasse Letager Hansen (letager@cs.au.dk)

March 31, 2025 - LogSem Seminar

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 1

mailto:letager@cs.au.dk
mailto:letager@cs.au.dk


Results of combining tools

We can prove security and correctness of a realistic implementation of protocols

This is achieved by using a combination of tools:
Hax

SSProve: Security proof of key schedule
F∗: runtime safety (panic freedom), correctness of serialization and parsing
ProVerif: authenticity and confidentiality guarantees

libcrux: secure and efficient implementations of cryptographic primitives

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 2

mailto:letager@cs.au.dk


Results of combining tools

We can prove security and correctness of a realistic implementation of protocols

This is achieved by using a combination of tools:
Hax

SSProve: Security proof of key schedule
F∗: runtime safety (panic freedom), correctness of serialization and parsing
ProVerif: authenticity and confidentiality guarantees

libcrux: secure and efficient implementations of cryptographic primitives

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 2

mailto:letager@cs.au.dk


TLS 1.3

Transport Layer Security:
Used for client-server communication across a network
prevents eavesdropping and tampering
uses handshake protocol to decide ciphers and exchange keys

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 3

mailto:letager@cs.au.dk


Related projects

Project Everest: build and deploy formally verified implementations of HTTPS
components (such as TLS)
TLS 1.3 triage panel: checking status of formal analysis for proposed changes (requires
updates or changes)
Twin transition:

using formal methods
post quantum

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 4

mailto:letager@cs.au.dk


What are State Separating Proofs (SSP)

We can construct cryptographic proofs modularly by
deconstructing programs and protocols into packages
compose packages in parallel and serial to get larger programs

To prove security we
Construct games (pairs of packages) and show indistinguishability
Combine a sequence of game hops, to go from real to ideal behavior

Figure: State Separation for Code-Based Game-Playing Proofs

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 5

mailto:letager@cs.au.dk


What are State Separating Proofs (SSP)

We can construct cryptographic proofs modularly by
deconstructing programs and protocols into packages
compose packages in parallel and serial to get larger programs

To prove security we
Construct games (pairs of packages) and show indistinguishability
Combine a sequence of game hops, to go from real to ideal behavior

Figure: State Separation for Code-Based Game-Playing Proofs

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 5

mailto:letager@cs.au.dk


What are State Separating Proofs (SSP)

We can construct cryptographic proofs modularly by
deconstructing programs and protocols into packages
compose packages in parallel and serial to get larger programs

To prove security we
Construct games (pairs of packages) and show indistinguishability
Combine a sequence of game hops, to go from real to ideal behavior

Figure: State Separation for Code-Based Game-Playing Proofs

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 5

mailto:letager@cs.au.dk


What are State Separating Proofs (SSP)

Originating from
the Everest project
the Joy of Cryptography (book)

Also used for proofs by cryptographers
Helps scale development and keep modularity

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 6

mailto:letager@cs.au.dk


What do we want to prove - Real protocol

Figure: Image from "Key-schedule Security for the TLS 1.3 Standard"

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 7

mailto:letager@cs.au.dk


What do we want to prove - Ideal protocol

Figure: Image from "Key-schedule Security for the TLS 1.3 Standard"

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 8

mailto:letager@cs.au.dk


From SSP to SSProve

From an existing informal proof, we construct a formal proof
Write the code of the packages for each game hop
Prove the correctness of composition of packages into games (Semi-automatic)
Prove indistinguishability of each game
Compose the games and show the advantage of an adversary is bounded

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 9

mailto:letager@cs.au.dk


SSProve

a foundational framework for modular cryptographic proofs in Coq

a language with monadic state and probability
game hopping style proofs in the computational model
a program logic derived from the categorical Dijkstra monad framework

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 10

mailto:letager@cs.au.dk


Differences from Paper proof
Indexing

The Key Schedule is parameterized by a resumption bound (d)
The Key Schedule Game (Gks) runs in rounds given by an index ℓ

Figure: Image from "Key-schedule Security for the TLS 1.3 Standard"

In each round we have a idealization order, grouping names in a sequence of steps

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 11

mailto:letager@cs.au.dk


Differences from Paper proof
Wire Indexing

When constructing the protocol, we assign "wires". These are indexed by the bound, the
round, and the level

wirebt,d ,ℓ,n = start-offset+ n + ℓ ·#names + t · (k + 1) ·#names

Given two wires and that d ≤ k , we get no overlap if
the names (n) differ
the round indexes (ℓ) differ
the wire types (t) differ
the index of the other wire is before start-offset

An artifact of verification, requiring disjointness and freshness of memory
possibly made easier by an extension of SSProve using nominal sets

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 12

mailto:letager@cs.au.dk


Differences from Paper proof
Wire Indexing

When constructing the protocol, we assign "wires". These are indexed by the bound, the
round, and the level

wirebt,d ,ℓ,n = start-offset+ n + ℓ ·#names + t · (k + 1) ·#names

Given two wires and that d ≤ k , we get no overlap if
the names (n) differ
the round indexes (ℓ) differ
the wire types (t) differ
the index of the other wire is before start-offset

An artifact of verification, requiring disjointness and freshness of memory
possibly made easier by an extension of SSProve using nominal sets

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 12

mailto:letager@cs.au.dk


Differences from Paper proof
Composition order

The paper defines the Key Schedule as

Gks =
d⋃

ℓ=0

Groundℓ

Groundℓ =
⋃
n∈N

Pℓ,n

Where d is a global/implicit argument.

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 13

mailto:letager@cs.au.dk


Differences from Paper proof
Composition order

We defines the Key Schedule as
Gks =

⋃
n∈N

Ghierarchy n

Ghierarchy n =
d⋃

ℓ=0

Pℓ,n

This seems to make the composition easier
we only need to handle miss-alignment in the external cases e.g. with imports/exports

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 14

mailto:letager@cs.au.dk


Differences from Paper proof
Composition order

We define all packages based on the horizontal and parallel constructions

Ks d N fB =
⋃
n∈N

d⋃
ℓ=0

Key
fB(n,ℓ)
n,ℓ

Ls d N fP =
⋃
n∈N

Log
fP(n)
n

Generalize description of packages to bundles of similar interfaces

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 15

mailto:letager@cs.au.dk


Differences from Paper proof
Assumption

We assume
an implementation of a (secure) hashing algorithm
that substituting Diffie-Hellman (DH) with a
Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) is still secure

Diffie-Hellman: the common standard for exchanging keys (weak to some forms of attack
e.g. man-in-the-middle (MIM))
ML-KEM: post quantum secure key-exchange mechanism

the implementation of the ML-KEM is secure

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 16

mailto:letager@cs.au.dk


Application of Proof

Now we have a game proving security of a TLS-like key schedule.
we instantiate the proof with an actual TLS-like implementation

Using the Hax framework, we
translate the implementation to SSProve
show equivalence between the translated code and real protocol (another game)

This gives us a (parameterized) security bound for the implementation.

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 17

mailto:letager@cs.au.dk


Hax

a subset of safe Rust with translations to proof assistants (F∗, Rocq, SSProve, ProVerif)
executable specification in safe Rust
used for writing specification and cryptographic implementation

Why Rust?
memory safe
ML-like type system
as fast as C, industry grade
used by cryptographers / software engineers

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 18

mailto:letager@cs.au.dk


TLS Implementation

Key schedule implemented by
Extract (XTR) and Expand (XPD) functions
Parent name (PrntN) function

We instantiate Extract (XTR) and Expand (XPD) functions using
HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

The Parent name function, defines the key derivation graph

Figure: Image from "Key-schedule Security for the TLS 1.3 Standard"

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 19

mailto:letager@cs.au.dk


TLS Implementation
Using Key schedule implementation for handshake

To implement the handshake protocol of TLS 1.3 we
call XTR and XPD to step the graph
bundle derivations in communication rounds

XTRES , XPD{CET ,EEM,BIND,BINDER,ESALT}
XTRHS , XPD{CHT ,SHT ,HSALT}
XTRAS , XPD{CAT ,SAT ,RM,PSK}

Inject initial keys (PSK0/no-PSK, 0IKM, 0salt, KEM)

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 20

mailto:letager@cs.au.dk


TLS Implementation
Proofs help structure code

We use handles to separate the state from the keys.
This adds (stronger) meta information to graph

Ensures that a given step, has the correct handle type

This makes the code very modular and reusable (e.g. for MLS)
We use efficient and secure primitives from libcrux

this ensures a realistic implementation, usable by even small/IOT devices

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 21

mailto:letager@cs.au.dk


Security proof

Given all the parts above, we construct a sequence of game jumps
instantiating proof

from implementation to real protocol
modularize to enable SSP style proofs

from full real protocol to combination of modular parts
idealizing parts

from real modular part to ideal modular part
recombining parts

combining ideal parts, to get the full ideal protocol

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 22

mailto:letager@cs.au.dk


Conclusion

The cryptographic community is getting more interested in using formal methods
SSP style of proofs invites modular and scalable implementations

proofs are re-usable
some work required to bundle and structure proof (somewhat automatable)

Hax framework enables multi-tool verification effort, with a common reference
implementation
libcrux allows instantiation of primitives with a secure and efficient implementation

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 23

mailto:letager@cs.au.dk

	Presentation
	What protocol
	Everest , TLS triage , twin transition (post quantum + formal)
	State Separating Proves (SSP)
	Translation from Rust

