Proving security of TLS 1.3 protocol

Lasse Letager Hansen (letager@cs.au.dk)

AARHUS
/v UNIVERSITY

March 31, 2025 - LogSem Seminar

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 1

mailto:letager@cs.au.dk
mailto:letager@cs.au.dk

Results of combining tools

We can prove security and correctness of a realistic implementation of protocols

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 2

mailto:letager@cs.au.dk

Results of combining tools

We can prove security and correctness of a realistic implementation of protocols

This is achieved by using a combination of tools:

@ Hax

e SSProve: Security proof of key schedule
o F*: runtime safety (panic freedom), correctness of serialization and parsing

e ProVerif: authenticity and confidentiality guarantees
@ libcrux: secure and efficient implementations of cryptographic primitives

March 31, 2025 - LogSem Seminar 2

Proving security of TLS 1.3 protocol

Lasse Letager Hansen (letager@cs.au.dk)

mailto:letager@cs.au.dk

Transport Layer Security:

@ Used for client-server communication across a network
@ prevents eavesdropping and tampering

@ uses handshake protocol to decide ciphers and exchange keys

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 3

mailto:letager@cs.au.dk

Related projects

@ Project Everest: build and deploy formally verified implementations of HTTPS
components (such as TLS)

@ TLS 1.3 triage panel: checking status of formal analysis for proposed changes (requires
updates or changes)

@ Twin transition:

e using formal methods
@ post quantum

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 4

mailto:letager@cs.au.dk

What are State Separating Proofs (SSP)

We can construct cryptographic proofs modularly by
@ deconstructing programs and protocols into packages
@ compose packages in parallel and serial to get larger programs

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 5

mailto:letager@cs.au.dk

What are State Separating Proofs (SSP)

We can construct cryptographic proofs modularly by
@ deconstructing programs and protocols into packages
@ compose packages in parallel and serial to get larger programs
To prove security we
e Construct games (pairs of packages) and show indistinguishability
@ Combine a sequence of game hops, to go from real to ideal behavior

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 5

mailto:letager@cs.au.dk

What are State Separating Proofs (SSP)

We can construct cryptographic proofs modularly by
@ deconstructing programs and protocols into packages
@ compose packages in parallel and serial to get larger programs
To prove security we
e Construct games (pairs of packages) and show indistinguishability
@ Combine a sequence of game hops, to go from real to ideal behavior

S

out(A)[— in(A) ____ 1in(B) out(d) _ in(4)

Figure: State Separation for Code-Based Game-Playing Proofs

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 5

mailto:letager@cs.au.dk

What are State Separating Proofs (SSP)

Originating from
@ the Everest project
e the Joy of Cryptography (book)
Also used for proofs by cryptographers
@ Helps scale development and keep modularity

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 6

mailto:letager@cs.au.dk

What do we want to prove - Real protocol

DHEXP
DHGEN SETdn Nk [Qan T4
DH O ¥ erm n
GETdh,0..c

oA

SETpei 1
psk,0 Ko, 0 Qpsk LA,
(CETpsk,0..d KO 1.a [INQpsk =
ETpsk, 1..d

ﬁASH
XTR, XtrQs/as,0.0
eslasis 0.4 Xirloo g | CTosato. OKosato.¢
/ GET, 0K,
XPDsen, . xpoxm > oo . [T0Mmos | Kownoa

Check

(GETpinder, SETo:
binder, 0..d 00, d—T kS Qo+ 2
0.9 - o
GETor 0. § oo

Figure: Image from "Key-schedule Security for the TLS 1.3 Standard"

i

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 7

mailto:letager@cs.au.dk

What do we want to prove - Ideal protocol

SETpg0
DHEXP
DHGEN
XTResins,as,0.d
XPDexpo.d

&

S
SETO*, 0.0 1
Ko oa [UNQO™ [
L

GETor g

Figure: Image from "Key-schedule Security for the TLS 1.3 Standard"

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 8

mailto:letager@cs.au.dk

From SSP to SSProve

From an existing informal proof, we construct a formal proof
@ Write the code of the packages for each game hop
@ Prove the correctness of composition of packages into games (Semi-automatic)
@ Prove indistinguishability of each game

@ Compose the games and show the advantage of an adversary is bounded

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 9

mailto:letager@cs.au.dk

@ a foundational framework for modular cryptographic proofs in Coq
@ a language with monadic state and probability
@ game hopping style proofs in the computational model

@ a program logic derived from the categorical Dijkstra monad framework

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 10

mailto:letager@cs.au.dk

Differences from Paper proof

Indexing

@ The Key Schedule is parameterized by a resumption bound (d)
@ The Key Schedule Game (Gks) runs in rounds given by an index ¢

Figure: Image from "Key-schedule Security for the TLS 1.3 Standard"

@ In each round we have a idealization order, grouping names in a sequence of steps

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 11

mailto:letager@cs.au.dk

Differences from Paper proof

Wire Indexing

When constructing the protocol, we assign "wires". These are indexed by the bound, the
round, and the level

Wireé’,d,&n = start-offset + n+ - #names + t - (k + 1) - #-names

Given two wires and that d < k, we get no overlap if
@ the names (n) differ
@ the round indexes (¢) differ
o the wire types (t) differ
@ the index of the other wire is before start-offset

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 12

mailto:letager@cs.au.dk

Differences from Paper proof

Wire Indexing

When constructing the protocol, we assign "wires". These are indexed by the bound, the
round, and the level

Wireé’,d,&n = start-offset + n+ - #names + t - (k + 1) - #-names

Given two wires and that d < k, we get no overlap if
@ the names (n) differ
@ the round indexes (¢) differ
o the wire types (t) differ
@ the index of the other wire is before start-offset
An artifact of verification, requiring disjointness and freshness of memory

@ possibly made easier by an extension of SSProve using nominal sets

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 12

mailto:letager@cs.au.dk

Differences from Paper proof

Composition order

The paper defines the Key Schedule as

d
Gks = U Groundg
=0

rounde = U 'Dﬂn

neN
Where d is a global/implicit argument.

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 13

mailto:letager@cs.au.dk

Differences from Paper proof

Composition order

We defines the Key Schedule as

Gis = U Ghierarchy,,
neN

d
Ghierarchyn = U PZ,n
£=0

This seems to make the composition easier

@ we only need to handle miss-alignment in the external cases e.g. with imports/exports

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 14

mailto:letager@cs.au.dk

Differences from Paper proof

Composition order

We define all packages based on the horizontal and parallel constructions

d
Ksd N fy =] | Key/5""
neN (=0

Lsd N fp= | Logit"™

neN

Generalize description of packages to bundles of similar interfaces

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 15

mailto:letager@cs.au.dk

Differences from Paper proof

Assumption

We assume

@ an implementation of a (secure) hashing algorithm
@ that substituting Diffie-Hellman (DH) with a
Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) is still secure

o Diffie-Hellman: the common standard for exchanging keys (weak to some forms of attack
e.g. man-in-the-middle (MIM))

o ML-KEM: post quantum secure key-exchange mechanism
@ the implementation of the ML-KEM is secure

Lasse Letager Hansen (letager@cs.au.dk)

Proving security of TLS 1.3 protocol

March 31, 2025 - LogSem Seminar 16

mailto:letager@cs.au.dk

Application of Proof

Now we have a game proving security of a TLS-like key schedule.
@ we instantiate the proof with an actual TLS-like implementation
Using the Hax framework, we
@ translate the implementation to SSProve
@ show equivalence between the translated code and real protocol (another game)

This gives us a (parameterized) security bound for the implementation.

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 17

mailto:letager@cs.au.dk

@ a subset of safe Rust with translations to proof assistants (F*, Rocq, SSProve, ProVerif)

@ executable specification in safe Rust

@ used for writing specification and cryptographic implementation
Why Rust?

@ memory safe

o ML-like type system

@ as fast as C, industry grade

@ used by cryptographers / software engineers

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 18

mailto:letager@cs.au.dk

TLS Implementation

Key schedule implemented by
e Extract (XTR) and Expand (XPD) functions
e Parent name (PrntN) function
We instantiate Extract (XTR) and Expand (XPD) functions using
HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

The Parent name function, defines the key derivation graph

Figure: Image from "Key-schedule Security for the TLS 1.3 Standard"

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 19

mailto:letager@cs.au.dk

TLS Implementation

Using Key schedule implementation for handshake

To implement the handshake protocol of TLS 1.3 we
@ call XTR and XPD to step the graph
@ bundle derivations in communication rounds

o XTRegs, XPDyceT,EEm,BIND,BINDER, ESALT}
o XTRpus, XPD{cHt sHT HSALT}
o XTRas, XPDycat saT,RM,PSK}

e Inject initial keys (PSKo/no-PSK, Oikm, Osaie, KEM)

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 20

mailto:letager@cs.au.dk

TLS Implementation

Proofs help structure code

We use handles to separate the state from the keys.
@ This adds (stronger) meta information to graph
o Ensures that a given step, has the correct handle type
@ This makes the code very modular and reusable (e.g. for MLS)
We use efficient and secure primitives from libcrux

e this ensures a realistic implementation, usable by even small/IOT devices

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 21

mailto:letager@cs.au.dk

Security proof

Given all the parts above, we construct a sequence of game jumps
@ instantiating proof
e from implementation to real protocol
@ modularize to enable SSP style proofs
e from full real protocol to combination of modular parts
o idealizing parts
o from real modular part to ideal modular part
@ recombining parts
e combining ideal parts, to get the full ideal protocol

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 22

mailto:letager@cs.au.dk

Conclusion

The cryptographic community is getting more interested in using formal methods

SSP style of proofs invites modular and scalable implementations

e proofs are re-usable
e some work required to bundle and structure proof (somewhat automatable)

Hax framework enables multi-tool verification effort, with a common reference
implementation

libcrux allows instantiation of primitives with a secure and efficient implementation

Lasse Letager Hansen (letager@cs.au.dk) Proving security of TLS 1.3 protocol March 31, 2025 - LogSem Seminar 23

mailto:letager@cs.au.dk

	Presentation
	What protocol
	Everest , TLS triage , twin transition (post quantum + formal)
	State Separating Proves (SSP)
	Translation from Rust

