
Optimizing Code

Lasse Letager Hansen
Email: lasse@letager.dk

Aarhus University

September 12, 2020

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 1 / 23

What is this talk?

Looking at improving readability, speed and the feel of programming.

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 2 / 23

Overview

1 Introduction

2 Should you optimize?

3 The optimization process

4 Example

5 O-notation

6 Different ways of optimizing

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 3 / 23

Should you optimize?

Small investment, but huge benefit
Learn when not to optimize (can be a time-sink)
Takes time to learn
More “thinking” than “putting in the effort”
Extends to everything (not just coding)
You can optimize: Time, complexitity, readability, memory usage,
size, ...

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 4 / 23

Optimization process
Can something be done better?

Is there an issue? (run-time, precision, memory, etc.)
Find the bottleneck (analysis tools, debugging, code profiler, etc.)
Find solutions (from memory, trial and error, stack overflow, etc.)
Repeat if necessary

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 5 / 23

Example
Count uses of words - 0

1 d ← scan (" 100−0 . tx t " , " c h a r a c t e r " , sep="\n")
2
3 word_uses ← l i s t ()
4
5 f o r (i i n 1 : l e n g t h (d)) {
6 l i n e ← gsub ("\n" , " " , d [[i]])
7 words ← s t r s p l i t (l i n e , " ") [[1]]
8
9 f o r (j i n 1 : l e n g t h (words)) {

10 word ← t o l o w e r (words [j])
11
12 i f (word == " ") next
13 i f (word %i n% names (word_uses)) {
14 word_uses [[word]] ← word_uses [[word]] + 1
15 }
16 e l s e {
17 word_uses [[word]] ← 1
18 }
19 }
20 }

Time: real 8m28s, user 8m27s
Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 6 / 23

Improving code

First step is finding out where we can improve, so code cleanup goes a
long way

Make code easy to understand
Indexes are hard to read, use iterators when possible
Add comments if needed, less is more

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 7 / 23

Example
Count uses of words - 1

21 d ← scan (" 100−0 . tx t " , " c h a r a c t e r " , sep="\n")
22
23 word_uses ← l i s t ()
24
25# S p l i t l i n e s on space and new l ine , to ge t l i s t s o f words
26 l i n e s ← gsub ("\n" , " " , d)
27 f o r (l i n e i n l i n e s) {
28 words ← s t r s p l i t (l i n e , " ") [[1]]
29 words ← t o l o w e r (words)
30
31 ## Inc rement count f o r each word i n l i n e
32 f o r (word i n words) {
33 i f (word == " ") next
34 i f (word %i n% names (word_uses)) {
35 word_uses [[word]] ← word_uses [[word]] + 1
36 }
37 e l s e {
38 word_uses [[word]] ← 1
39 }
40 }
41 }

Time: real 8m10s, user 8m9s
Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 8 / 23

Parallelization

If you process a lot of data in a non-dependent manner, you can
parallelize it.

Use all computation power, instead of parts of it.
Often adds complexity, and a small overhead to get started
Improves run-time, but not the run-time complexity

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 9 / 23

Example
Count uses of words - 2

42 l i b r a r y (p a r a l l e l)
43 l i b r a r y (f o r e a c h)
44 l i b r a r y (d o P a r a l l e l)
45 l i b r a r y (i t e r a t o r s)
46 l i b r a r y (i t e r t o o l s)
47
48 d ← scan (" 100−0 . tx t " , " c h a r a c t e r " , sep="\n")
49
50 words ← t o l o w e r (u n l i s t (s t r s p l i t (gsub ("\n" , " " , d) , " ")))
51
52 numCores ← d e t e c t C o r e s ()
53 c l ← makeC lus te r (numCores)
54 r e g i s t e r D o P a r a l l e l (c l)
55
56 word_uses ← f o r e a c h (words2=i s p l i t V e c t o r (words , chunks=numCores ∗2) ,
57 .combine=f u n c t i o n (a , b) {
58 b [names (a)] ← Map("+" , i f e l s e (Map(i s . n u l l , b [names (a)]) , 0 , b

[names (a)]) , a)
59 b
60 }) %dopar% {

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 10 / 23

Example
Count uses of words - 2 (cont.)

61 word_uses ← l i s t ()
62 f o r (word i n words2) {
63 i f (word == " ") next
64
65 i f (word %i n% names (word_uses)) {
66 word_uses [[word]] ← word_uses [[word]] + 1
67 }
68 e l s e {
69 word_uses [[word]] ← 1
70 }
71 }
72 word_uses
73 }
74
75 s t o p C l u s t e r (c l)

Time∗: real 0m36,644s, user 0m4,169s

∗Run on 8 cores using parallelization libraries
Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 11 / 23

O-notation / Time complexity
A way to analyze code run-time complexity

Linear complexity O(n)
76 for i in 1:n:
77 # do something

Quadratic complexity O(n2)

78 for i in 1:n:
79 for j in 1:n:
80 # do something

Logarithmic complexity O(log n)
81 while i < n:
82 # do something
83 i ← i * 2

Constant complexity O(log n)
84 x ← 5

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 12 / 23

Data structures

Thinking instead of brute forcing is the essence of optimization.
Parallelization only effects the constant, however changing data
structures and how we process data can effect the time complexitiy.
Eg. lists in R take O(n) time for a lookup by name, while a
dictionary (in python) / hashmap takes O(1) for named lookup†.
Environments are implemented using hashmaps.
Instead of getting the computer to use all its resources on inefficient
computations, we can instead focus on improving the way we
process the data.

†https://www.refsmmat.com/posts/2016-09-12-r-lists.html
Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 13 / 23

Example
Count of words - 3

If we use an environment instead of a list, we get a runtime of O(n)
instead of O(n2).

85 d ← scan (" 100−0 . tx t " , " c h a r a c t e r " , sep="\n")
86
87 words ← t o l o w e r (u n l i s t (s t r s p l i t (gsub ("\n" , " " , d) , " ")))
88
89 word_uses ← new.env ()
90
91## Inc rement count f o r each word i n l i n e
92 f o r (word i n words) {
93 i f (word == " ") next
94 i f (! i s . n u l l (word_uses [[word]])) {
95 word_uses [[word]] ← word_uses [[word]] + 1
96 }
97 e l s e {
98 word_uses [[word]] ← 1
99 }

100 }
101
102 word_uses ← a s . l i s t (word_uses)

Time: real 0m3s, user 0m2s
Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 14 / 23

Do not reinvent the wheel
Use the internet

Try searching for solutions to your problem, and look in the standard
library solutions.
Use StackOverflow, however be mindful to understand the solutions,
since copy pasting bad code can make things worse, and make your
code hard to understand.
For example a table counts the number of occurrences of elements
in our data directly, meaning the code could just be

103 d ← scan (" 100−0 . tx t " , " c h a r a c t e r " , sep="\n")
104
105 words ← t o l o w e r (u n l i s t (s t r s p l i t (gsub ("\n" , " " , d) , " ")))
106 word_uses ← a s . l i s t (t a b l e (words , e x c l u d e=" "))

Time: real 0m2s, user 0m2s

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 15 / 23

Memory allocation in R

What is the problem with this for loop?
107 j ← 1
108 for (i in 1:100000000) {
109 j[i] ← 1
110 }

Time: real 28m50s, user 3m18s
It has to resize the vector repeatedly, which is slow, instead resize before
the loop:

111 j ← rep(NA, 100000000)
112 for (i in 1:100000000) {
113 j[i] = 1
114 }

Time: real 0m4s, user 0m4s
Using apply does such optimizations for you, so it is faster, if replacing
un-optimized code.

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 16 / 23

Memory deallocation in R

Similarly if you have big amounts of data that you do not use anymore,
clean it up. If you have too much in ram, you will begin using slower
types of memory, decreasing operation speed.

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 17 / 23

Vectorization in R

Instead of doing the same operation on each element in your data
115 j ← rep(NA, 400000000)
116 for (i in 1:400000000) {
117 j[i] ← exp(i)
118 }

Time: real 0m27s, user 0m26s
you can vectorize the operation, and apply it to everything at once

119 j ← rep(NA, 400000000)
120 j ← exp(1:400000000)

Time: real 0m10s, user 0m5s

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 18 / 23

Learning Classical examples

Searching through a list (Linear search vs Binary search vs
Dictionary)
Sorting a list (Insertion sort, bubble sort, merge sort)
Dynamic Programming (Memory vs Computation trade-off)

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 19 / 23

Sources for learning optimization

Good sources for information include:
www.stackoverflow.com
www.r-bloggers.com
www.google.com

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 20 / 23

www.stackoverflow.com
www.r-bloggers.com
www.google.com

Conclusion / Main Points

Optimization can give a huge payoff
Doing too much gives a small payoff, find a balance
Experience is a great help, so try reading up on some optimization
Optimization is not confined to run-time, think about readability
and environment you work in.

Lasse Letager Hansen (Aarhus University) Optimizing Code September 12, 2020 21 / 23

Questions

Questions?

	Introduction
	Should you optimize?
	The optimization process
	Example
	O-notation
	Different ways of optimizing

