
Proving the Core Security Theorem for the TLS-1.3 Key Schedule

Karthikeyan Bhargavan1, Lasse Letager Hansen2 (letager@cs.au.dk),
Franziskus Kiefer1, Jonas Schneider-Bensch1, and Bas Spitters2

June 30, 2025 - NordiCrypt

1Cryspen
2Aarhus University

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 1

mailto:letager@cs.au.dk
mailto:letager@cs.au.dk


Results of combining tools

We can prove the security and correctness of a realistic implementation of protocols.

This is achieved by using a combination of tools:
Hax (from Rust to)

SSProve: Security proof of key schedule in the computational model
F⋆: runtime safety (panic freedom), correctness of serialization and parsing
ProVerif: authenticity and confidentiality guarantees in the symbolic model (or ‘Dolev-Yao’)

libcrux: secure and efficient implementations of cryptographic primitives

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 2

mailto:letager@cs.au.dk


Results of combining tools

We can prove the security and correctness of a realistic implementation of protocols.

This is achieved by using a combination of tools:
Hax (from Rust to)

SSProve: Security proof of key schedule in the computational model
F⋆: runtime safety (panic freedom), correctness of serialization and parsing
ProVerif: authenticity and confidentiality guarantees in the symbolic model (or ‘Dolev-Yao’)

libcrux: secure and efficient implementations of cryptographic primitives

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 2

mailto:letager@cs.au.dk


Related projects

Project Everest
build and deploy formally verified implementations of HTTPS components (such as TLS).

TLS 1.3 triage panel
report if proposed changes break any existing formal analysis

Twin transition:
using formal methods
post-quantum

Signal, WireGuard, MLS

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 3

mailto:letager@cs.au.dk


F⋆

is a proof-oriented programming language
enables dependent types with proof automation based on SMT solving
is, in this work, used for showing

panic freedom: e.g. there are no overflow, division by zero, out-of-bounds errors, etc.
parsing correctness: all messages are parsed correctly based on the serialization scheme.
thus covering the main source of practical attacks

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 4

mailto:letager@cs.au.dk


ProVerif

is an automated tool for checking security protocols
works in the symbolic model (or ‘Dolev-Yao’)
automatically verifies security properties, such as confidentiality, integrity, and authenticity
works on a protocol model written in terms of message-passing processes
here we use the proofs of F⋆ and SSProve in the computational model to cover
assumptions.

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 5

mailto:letager@cs.au.dk


What are State Separating Proofs (SSP)

We can construct cryptographic proofs modularly by
deconstructing programs and protocols into packages (program fragments)
compose packages in parallel and serial to get larger programs

To prove security, we
Construct games (pairs of packages) and show indistinguishability
Combine a sequence of game hops to go from real to ideal behavior

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 6

mailto:letager@cs.au.dk


What are State Separating Proofs (SSP)

We can construct cryptographic proofs modularly by
deconstructing programs and protocols into packages (program fragments)
compose packages in parallel and serial to get larger programs

To prove security, we
Construct games (pairs of packages) and show indistinguishability
Combine a sequence of game hops to go from real to ideal behavior

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 6

mailto:letager@cs.au.dk


What are State Separating Proofs (SSP)

Figure: Image from “SSProve: A Foundational Framework for Modular Cryptographic Proofs in Coq”

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 7

mailto:letager@cs.au.dk


What do we want to prove - protocol specification

Figure: Image from “Key-schedule Security for the TLS 1.3 Standard”

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 8

mailto:letager@cs.au.dk


What do we want to prove - ideal protocol

Figure: Image from “Key-schedule Security for the TLS 1.3 Standard”

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 9

mailto:letager@cs.au.dk


What are State Separating Proofs (SSP)

Originating from
the Everest project
the Joy of Cryptography (book)

Using SSP for proofs
helps scale development and keep modularity
keeps formulation clear and consistent

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 10

mailto:letager@cs.au.dk


From SSP to SSProve

From an existing informal proof, we construct a formal proof
write the code of the packages for each game hop
prove the correctness of the composition of packages into games (semi-automatic)
prove indistinguishability of each game
compose the games to show the advantage of an adversary is bounded

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 11

mailto:letager@cs.au.dk


Rocq and Interactive Theorem Proving (ITP)

Interactive theorem proving is an extension of automated theorem proving that allows one
to check any mathematical proof.
popular for critical software (cryptography),
widely used in the programming language community,
and gaining traction with mathematicians.

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 12

mailto:letager@cs.au.dk


SSProve

a framework for modular cryptographic proofs (e.g. SSP) in the Rocq proof assistant
foundational, e.g. fully formalized and specified

an imperative language with state and probability
game hopping style proofs in the computational model

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 13

mailto:letager@cs.au.dk


Differences from paper proof
Indexing

The key schedule is parameterized by a resumption bound (d), the game runs in rounds
given by an index ℓ

Figure: Image from “Key-schedule Security for the TLS 1.3 Standard”

In each round we have an idealization order, grouping names in a sequence of steps

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 14

mailto:letager@cs.au.dk


Differences from paper proof
Wire Indexing

When constructing the protocol, we assign “wires”. Similarly to channels in the UC model.
These are indexed by the bound, the round, and the level

wirebt,k,ℓ,n = start-offset+ n + ℓ ·#names + t · (k + 1) ·#names

Given two wires, they do not overlap if
the names (n) differ
the round indexes (ℓ) differ
the wire types (t) differ
the index of the other wire is before start-offset

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 15

mailto:letager@cs.au.dk


Differences from paper proof
Wire Indexing

When constructing the protocol, we assign “wires”. Similarly to channels in the UC model.
These are indexed by the bound, the round, and the level

wirebt,k,ℓ,n = start-offset+ n + ℓ ·#names + t · (k + 1) ·#names

Given two wires, they do not overlap if
the names (n) differ
the round indexes (ℓ) differ
the wire types (t) differ
the index of the other wire is before start-offset

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 15

mailto:letager@cs.au.dk


Differences from paper proof
Composition order

We define all packages based on the horizontal and parallel constructions
can give a simpler proof due to a different composition order

In the verification, we need to be precise about variable renaming and memory separation
e.g. requiring disjointness and freshness of memory
can be simplified by vizualization and automation tools

CryptoZoo
SSBee (https://github.com/sspverif/sspverif/)
ProofFrog (https://prooffrog.github.io/)

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 16

https://github.com/sspverif/sspverif/
https://prooffrog.github.io/
mailto:letager@cs.au.dk


Cryptographic Assumptions

Our cryptographic assumptions
an implementation of a (secure) hashing algorithm
that substituting Diffie-Hellman (DH) with a
Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) is still secure
the implementation of the ML-KEM is (post-quantum) secure

we use an implementation of a hybrid KEM, which has been shown to be panic free
ML-KEM has been shown to be secure against store-now-decrypt-later in a quantum
consistent model in EasyCrypt.

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 17

mailto:letager@cs.au.dk


Application of Proof

Now we have a game proving the security of any TLS-like key schedule.
we instantiate the proof with our TLS 1.3 implementation

Using the Hax framework, we
translate the implementation to SSProve

For SSProve, we
show equivalence between the translated code and protocol spec (another game)
application of game hopping for software verification

This gives us a security bound for the actual implementation

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 18

mailto:letager@cs.au.dk


Hax

a subset of safe Rust with translations to proof assistants (F⋆, Rocq, SSProve, ProVerif)
executable specification in safe Rust
used for writing cryptographic implementation

Why Rust?
memory safe
ML-like type system
as fast as C, industry grade
popular among cryptographic engineers

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 19

mailto:letager@cs.au.dk


TLS Implementation
Using Key schedule implementation for handshake

To implement the handshake protocol of TLS 1.3 we
define deriviation graph
call XTR and XPD to step the graph

instantiated by HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

Inject initial keys (PSK0/no-PSK, 0IKM, 0salt, KEM)

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 20

mailto:letager@cs.au.dk


TLS Implementation
Proofs help structure code

We use handles to separate the state from the keys.
This adds (stronger) meta information to graph
This makes the code very modular and reusable (e.g. for MLS)

We use efficient and secure primitives from libcrux
this ensures a realistic implementation, usable by even small/IOT devices

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 21

mailto:letager@cs.au.dk


Security proof

Given all the parts above, we construct a sequence of game jumps
instantiating proof

from implementation to protocol specification
modularize to enable SSP style proofs

from full protocol specification to combination of modular parts
idealizing parts

from real modular part to ideal modular part
recombining parts

combining ideal parts to get the full ideal protocol

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 22

mailto:letager@cs.au.dk


Conclusion

Hax facilitates developing high-assurance cryptographic software
Confluence of ideas from formal verification and cryptography
SSP style of proofs invites modular, reusable and scalable implementations
libcrux allows instantiation of primitives with a secure and efficient implementation
Hax framework enables a multi-tool verification effort with a common reference
implementation
Increasing interest in collaborative efforts e.g. the “Crypto Proof ladder”

Lasse Letager Hansen (letager@cs.au.dk) Proving the Core Security Theorem for the TLS-1.3 Key Schedule June 30, 2025 - NordiCrypt 23

mailto:letager@cs.au.dk

	Presentation
	What protocol
	Everest , TLS triage , twin transition (post quantum + formal)
	Other parts
	State Separating Proves (SSP)
	Translation from Rust

