
A formal security analysis of Blockchain voting

Nikolaj Sidorenco Laura Brædder Lasse Letager Hansen
Eske Hoy Nielsen Bas Spitters

Department of Computer Science, Aarhus University, Denmark

TYPES-2024

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 1

mailto:letager@cs.au.dk


Can we trust online voting?

How do we ensure the security of online voting implemented by smart contracts?

EU DATA ACT SMART CONTRACTS
(30a) robustness and access control:

ensure that the smart contract has been designed to offer
[. . . ] a very high degree of robustness to avoid functional
errors and to withstand manipulation by third parties.

SWISS E-VOTING REGULATION
Requires formal security proofs in the computational model

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 2

mailto:letager@cs.au.dk


Why is voting relevant for blockchains
Smart Contract Voting

Voting is used in blockchains for
consensus, governance, and decentralized organizations (DAOs).

Moreover, for blockchains, the adversarial model is complex:
The adversary has complete knowledge of the system and full access to the network.

The stakes are high, both financial and societal.
There can be bugs in

the specification, the cryptographic proofs and/or the implementation.

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 3

mailto:letager@cs.au.dk


Process

Implement an executable specification of a protocol in safe Rust (Hax)
Translate it into a proof assistant (Coq)
Prove security properties (SSProve)
Prove functional correctness and trace properties (ConCert)

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 4

mailto:letager@cs.au.dk


Hax

a subset of safe Rust with translations to proof
assistants
makes internet standards (e.g. IETF and NIST)
machine-readable.
executable specification in safe Rust

efficient implementation when building on the
libcrux library of verified cryptographic primitives

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 5

mailto:letager@cs.au.dk


SSProve

a foundational framework for modular cryptographic proofs in Coq

a language with monadic state and probability
a program logic derived from the categorical Dijkstra monad framework

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 6

mailto:letager@cs.au.dk


ConCert

A smart contract certification framework in Coq
Models an abstract account-based blockchain with pure smart contracts
Verified extraction to λ□

connects to CertiCoq which has verified extraction to WebAssembly (WASM)

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 7

mailto:letager@cs.au.dk


Online voting

Most online voting protocols use
Commitment schemes

Allows one to commit to a chosen value while keeping hidden to others
Zero Knowledge Proofs

A proof of knowledge about something without revealing anything extra

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 8

mailto:letager@cs.au.dk


Zero-Knowledge Proof (ZKP):

Schnorr
Proof that I know the exponents of an expression, without revealing them

OR proof
Proof that I know one of two statements is correct, without revealing which.
e.g. vote is 0 or 1

These examples are Σ-protocols
A three-step protocol

Alice Bob

Commit

Challenge

Response

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 9

mailto:letager@cs.au.dk


Σ-protocol - Security Properties

Correctness of protocol
Special Honest Verifier Zero-Knowledge (SHVZK)

A simulator that can construct a transcript given the response and challenge
Simulation Sound Extractability

An extractor that can construct the witness given two valid runs of the same commit

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 10

mailto:letager@cs.au.dk


Open Vote Network (OVN)

Protocol (using a group where the Decisional Diffie-Hellman (DDH) problem is hard):

Round 1 (register vote):
Each public key is put on the blockchain
and committed to (Schnorr ZKP)

Round 2 (commit to vote):
Verify commitment from round 1
Compute commitment to vote

Round 3 (cast vote):
Build an OR-proof (0 or 1) and cast vote

Round 4 (tally):
Verify the OR-proofs and commitments
Tally result

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 11

mailto:letager@cs.au.dk


Open Vote Network (OVN)

Properties
Self-tallying: After all ballots have been cast anyone can compute the result
Maximum ballot secrecy: Each ballot is indistinguishable from random input
Universal verifiability: Anyone can verify the protocol was done correctly

Security
Commitment (SSProve)
Schnorr ZK protocol and the OR-construction (SSProve)
Functional correctness (ConCert)

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 12

mailto:letager@cs.au.dk


Related work

Verification process
EasyCrypt: Not foundational

Unmaintained, but part of the inspiration for SSProve:
CertiCrypt, Foundational Cryptography Framework (FCF), CryptHOL

Symbolic proofs and provers: Doable in Hax
using e.g. Squirrel, Tamarin

Alternative voting protocol: ElectionGuard
is more off-chain but uses similar building blocks.

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 13

mailto:letager@cs.au.dk


Conclusion

Industrial application of type theory
First time showing both the correctness and security of a smart contract

Illustrate possibilities for formal methods as requirements of online voting
Can be made efficient with Libcrux library of verified crypto primitives

Lasse Letager Hansen (letager@cs.au.dk) A formal security analysis of Blockchain voting TYPES-2024 14

mailto:letager@cs.au.dk

	Presentation
	Tooling

