
The Last Yard
Foundational End-to-End Verification of High-Speed Cryptography

Philipp G. Haselwarter†,1 Benjamin Salling Hvass†,1

Lasse Letager Hansen†,1 Théo Winterhalter2 Cătălin Hriţcu3 Bas Spitters1

1Aarhus University, Denmark, 2Inria, France, 3MPI-SP, Germany

January 15

† Equal Contributions

Introduction
Problems

Specification gap
current standards use informal pseudo-code.

Implementation gap
unoptimized or unverified compilers
cryptographic primitives are often implemented directly in assembly

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 2

Introduction
Goal

We therefore want
a unified foundational framework for
end-to-end formal verification of
efficient cryptographic implementations

thus

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 3

Hacspec
Outline

1 Introduction

2 Hacspec

3 SSProve

4 Jasmin

5 Example: One-time pad (OTP)

6 Evaluation: Advanced Encryption Standard (AES)

7 Conclusion

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 4

Hacspec
Background - What is it?

The High Assurance Cryptography SPECification (Hacspec) language
provides a shared language
makes internet standards (e.g. IETF and NIST) machine-readable.
is a simple subset of Rust
has translations to proof assistants (e.g. Coq, EasyCrypt, or F⋆)

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 5

Hacspec
Workflow: Hacspec → SSProve

Starting from an official standard (e.g. NIST or IETF) produce Hacspec and generate
functional specification

easier to define and prove properties
SSProve specification

closer to efficient implementation
Translation validation

build a proof of equality

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 6

Hacspec
Workflow

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 7

Hacspec
Workflow

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 8

SSProve

SSProve:
is a foundational framework for modular cryptographic proofs in Coq
essentially embeds a stateful language inside Coq
the Dijkstra monad framework gives us a program logic to reason about this
embedded language

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 9

SSProve
Workflow: Security proof

We use the relational Hoare logic of SSProve for
equivalence proof: implementation ≈ specification
security proofs about specification

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 10

Hacspec
Equivalence between the Hacspec translations

We build a modular syntactic translation as triples
the functional specification
the SSProve specification
a proof of equality between them

This can be seen as a binary logical relation

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 11

Hacspec
Equivalence between the Hacspec translations

An example of such triple
Hacspec: let x := y; k

becomes
Coq: let x_fun := y_fun in k_fun

SSProve: x_imp ← y_imp ;; k_imp

Equality proof: ssprove_bind
Other examples are

loops, mutable let bindings, early returns, operator calls, lifting pure values, etc.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 12

Jasmin
Outline

1 Introduction

2 Hacspec

3 SSProve

4 Jasmin

5 Example: One-time pad (OTP)

6 Evaluation: Advanced Encryption Standard (AES)

7 Conclusion

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 13

Jasmin
Background

Jasmin
is a low-level language designed for implementing high-speed cryptography,
has a compiler implemented and verified in Coq supporting x86 and ARM
has a formal big-step operational semantics in Coq.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 14

Jasmin
Background

Jasmin
is an imperative language with structured control flow

loops, conditionals, and procedure calls.
has types for

booleans, integers, bit-words of various sizes, and arrays.

compiler produces predictable assembly code

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 15

Jasmin
Workflow: Jasmin → SSProve

From Jasmin we get
assembly implementation (from Jasmin compiler)

for which we
pretty-print the internal AST (de-extracting) to Coq syntax.
Jasmin Coq AST ⇒ SSProve implementation
get a mechanized proof that semantics are preserved

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 16

Jasmin
Correctness theorem

The main theorem, connecting function calls in Jasmin and in SSProve states that:
if f (v⃗)⇝ w⃗

then trans(f)(trans(v⃗))⇝ trans(w⃗)

the translation modifies memory in an equivalent manner. Combined with
the correctness theorems of the Jasmin compiler

allows us to prove properties about Jasmin in SSProve

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 17

Workflow
Jasmin

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 18

Introduction
Workflow - Jasmin

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 19

Introduction
Workflow - Jasmin

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 20

Introduction
Workflow - Jasmin

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 21

Example: One-time pad (OTP)

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 22

Example: One-time pad (OTP)
Specification

Hacspec definition

fn xor(w1 : u64, w2 : u64) -> u64 {
let mut x : u64 = w1;
let mut y : u64 = w2;
let mut r : u64 = x ^ y;
r

}

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 23

Example: One-time pad (OTP)
Specification

automatically translated to SSProve

Definition hacspec_xor (w1 : int64)
(w2 : int64) :=

letbm x_0 loc(x_0_loc) := w1 in
letbm y_1 loc(y_1_loc) := w2 in
letbm r_2 loc(r_2_loc) := x_0 .^ y_1 in
r_2.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 24

Example: One-time pad (OTP)
Jasmin implementation

Jasmin implementation

export fn xor(reg u64 x, reg u64 y)
-> reg u64

{
reg u64 r;
r = x;
r ^= y;
return r;

}

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 25

Example: One-time pad (OTP)
Jasmin implementation

automatically translated to SSProve.

Definition JXOR id w1 w2 :=
put x := w1 ;;
put y := w2 ;;
put r := w1 ⊕ w2 ;;
r1 ← get r ;;
ret r1.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 26

Example: One-time pad (OTP)
Equivalence of implementation and specification

Equivalence of translations

Theorem xor_equiv : ∀ id w1 w2,
⊢ {{{⊤}}}
JXOR id w1 w2 ≈ hacspec_xor_state w1 w2

{{{ λ (v0 , h0) (v1 , h1) , v0 = v1 }}}.

is proved using the rules of the relational program logic of SSProve.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 27

Example: One-time pad (OTP)
Security proof

SSProve define
a package: collection of procedures with import and export interface
a game: a package without imports
a game pair: two games that export the same procedures.

e.g. a real encryption scheme and an oracle

game hopping: chain of game pairs

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 28

Example: One-time pad (OTP)
Security proof

The Jasmin game (JOTP_real) exports

Definition JOTP id m :
k_val ← sample uniform (’word n) ;;
JXOR id m k_val.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 29

Example: One-time pad (OTP)
Security proof

The SSProve game (OTP_real) exports

Definition OTP m :
k_val ← sample uniform (’word n) ;;
ret m ⊕ k_val.

for which we have a security proof

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 30

Example: One-time pad (OTP)
Security proof

We now show the Jasmin implementation is secure (IND-CPA). Combining

Lemma JOTP_OTP_perf_ind id : JOTP_real id ≈ OTP_real.

with the already established security of OTP_real
we get security of JOTP_real

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 31

Framework
We now have a foundation framework!

Specifying in Hacspec and implementing in Jasmin
de-extracting and translating into SSProve
proving equivalence and security properties in SSProve

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 32

Evaluation: Advanced Encryption Standard (AES)

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 33

Evaluation: Advanced Encryption Standard (AES)

For a pseudo random function (PRF) one can build an encryption scheme

Definition PRF_ENC f m :=
k_val ← kgen ;; enc m k_val.

The enc function is given by

Definition enc m k :=
r ← sample uniform N ;;
let pad := f r k in let c := m ⊕ pad in
ret (r, c).

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 34

Evaluation: Advanced Encryption Standard (AES)

The high-level structure of the security analysis is
1 (imp.): intermediate impl. in SSProve
2 (fun.): functional impl. in Coq.
3 (imp.) ≈ (fun.).
4 (trans.) ≈ (imp.).
5 Connect to the existing security proof

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 35

Evaluation: Advanced Encryption Standard (AES)
Connecting AES to the PRF security proof

The encryption function implemented in Jasmin:

fn enc(reg u128 n,reg u128 k,reg u128 p)
-> reg u128

{
reg u128 mask, c;
mask = aes(n, k);
c = xor(mask, p);
return(c);

}

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 36

Evaluation: Advanced Encryption Standard (AES)
Connecting AES to the PRF security proof

We automatically translate it into SSProve as
JENC and use it in the following security game:

Definition JPRF_real id m :=
k_val ← kgen ;;
r ← sample uniform N ;;
res ← JENC id k_val r m ;;
ret (r, res)

prove it indistinguishability from a similar scheme CPRF_real JENC.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 37

Evaluation: Advanced Encryption Standard (AES)
Connecting AES to the PRF security proof

Now we show

Theorem JPRF_perf_ind id :
JPRF_real id ≈ CPRF_real.

and

Theorem CPRF_perf_ind :
CPRF_real ≈ PRF_real aes.

this combined with an equivalence to a Hacspec specification gives us end-to-end
verification of AES.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 38

Conclusion

We contribute
a framework for end-to-end verification
a monadic embedding of a simple subset of Rust into SSProve

with a refinement relation to a logical specification in Coq

pritty-printing of Jasmin and automatic translation to SSProve
the framework has strong guarantees:

Hacspec: translation validation
SSProve: equivalence proof, security properties
Jasmin: the preservation of operation semantics (robust compilation)

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 39

	Introduction
	Hacspec
	SSProve
	Jasmin
	Example: One-time pad (OTP)
	Evaluation: Advanced Encryption Standard (AES)
	Conclusion

