The Last Yard

Foundational End-to-End Verification of High-Speed Cryptography

Philipp G. Haselwarter’! Benjamin Salling Hvass'*
Lasse Letager Hansen! Théo Winterhalter> Catilin Hritcu®> Bas Spitters?

1Aarhus University, Denmark, 2|nria, France, 3MPI-SP, Germany

January 15

t Equal Contributions

Introduction

Problems

Specification gap

@ current standards use informal pseudo-code.
Implementation gap

@ unoptimized or unverified compilers

@ cryptographic primitives are often implemented directly in assembly

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 2

Introduction

Goal

We therefore want
a unified foundational framework for
end-to-end formal verification of
efficient cryptographic implementations

thus

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard

January 15 3

Hacspec

Outline

© Hacspec

letager@cs.au Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 4

Hacspec

Background - What is it?

The High Assurance Cryptography SPECification (Hacspec) language

@ provides a shared language
@ makes internet standards (e.g. IETF and NIST) machine-readable. W

@ is a simple subset of Rust
@ has translations %* to proof assistants (e.g. Coq, EasyCrypt, or F*)

The Last Yard January 15 5

Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters

letager@cs.au.dk

Hacspec

Workflow: Hacspec — SSProve

Starting from an official standard (e.g. NIST or IETF) produce Hacspec and generate
@ functional specification
e easier to define and prove properties
@ SSProve specification
e closer to efficient implementation
@ Translation validation
e build a proof of equality

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 6

Hacspec

Workflow

Hacspec

St specification —> validated translation

() handwritten artifacts
[:] generated artifacts

Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 7

Hacspec

Workflow

Standard ~ f:::::: IR
""" specification —> validated translation
formalized in Coq
\ 4 \ 4 formalized in SSProve
. .
SSProve - Equivalence - Functional C] handwritten artifacts
specification proof specification [:] generated artifacts
letager@cs.au Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 8

SSProve:
@ is a foundational framework for modular cryptographic proofs in Coq

@ essentially embeds a stateful language inside Coq
@ the Dijkstra monad framework gives us a program logic to reason about this
embedded language

The Last Yard January 15 9

Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters

letager@cs.au.dk

SSProve

Workflow: Security proof

We use the relational Hoare logic of SSProve for
@ equivalence proof: implementation ~ specification

@ security proofs about specification

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 10

Hacspec

Equivalence between the Hacspec translations

We build a modular syntactic translation £ as triples
@ the functional specification
@ the SSProve specification
@ a proof of equality between them

This can be seen as a binary logical relation

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 11

Hacspec

Equivalence between the Hacspec translations

An example of such triple

@ Hacspec: let x 1= y; k

becomes
e Coq: let x_fun := y_fun in k_fun
@ SSProve: x_imp ¢ y_imp ;; k_imp

e Equality proof: ssprove_bind
Other examples are

@ loops, mutable let bindings, early returns, operator calls, lifting pure values, etc.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 12

Jasmin

Outline

Q@ Jasmin

Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 13

Jasmin

Background

Jasmin
@ is a low-level language designed for implementing high-speed cryptography,
@ has a compiler implemented and verified in Coq supporting x86 and ARM

@ has a formal big-step operational semantics in Coq.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 14

Jasmin

Background

Jasmin
@ is an imperative language with structured control flow
e loops, conditionals, and procedure calls.
@ has types for
e booleans, integers, bit-words of various sizes, and arrays.

@ compiler produces predictable assembly code

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 15

Jasmin

Workflow: Jasmin — SSProve

From Jasmin we get
@ assembly implementation (from Jasmin compiler)

for which we
@ pretty-print the internal AST (de-extracting) to Coq syntax.
@ Jasmin Coq AST =- SSProve implementation

@ get a mechanized proof that semantics are preserved

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 16

Jasmin

Correctness theorem

The main theorem, connecting function calls in Jasmin and in SSProve states that:
o if f(V)~ w
o then trans(f)(trans(V)) ~ trans(w)

the translation modifies memory in an equivalent manner. Combined with
@ the correctness theorems of the Jasmin compiler

allows us to prove properties about Jasmin in SSProve

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 17

Workflow

Jasmin

verified translation/compilation

Standard ~ f:::::: IR
""" specification —> validated translation
—>» unverified parsing/pretty printing
formalized in Coq
\ 4 \ 4 formalized in SSProve
— EEEE—— . .
SSProve - Equivalence Functional C] handwritten artifacts
specification proof specification [:] generated artifacts
|
' A e
- Coq AST . Jasmin :
implementation
(. H vy \
(— N\ 4
Assembly Cogq AST _ Assembly
implementation
. J |
letager@cs.au Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 18

Introduction

Workflow - Jasmin

verified translation/compilation

Standard ~ f:::::: IR
""" specification —> validated translation
—>» unverified parsing/pretty printing
formalized in Coq
\ 4 \ 4 formalized in SSProve
— EEEE— . .
SSProve - Equivalence Functional C] handwritten artifacts
specification proof specification [:] generated artifacts
—
' A e
) SSProve) . Coq AST . Jasmin :
implementation implementation
(. H vy \
(— N\ 4
Assembly Cogq AST _ Assembly
implementation
. J |
letager@cs.au Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 19

Introduction

Workflow - Jasmin

verified translation/compilation

______ Hacspec
Simihdl | R specification —> validated translation
|- This paper —>» unverified parsing/pretty printing
R el -
1 : formalized in Coq
1
1 \ 4 \ 4 : formalized in SSProve
1 —)
1 . .
: SSProve - Equivalence - Functional ! C] handwritten artifacts
1 specification proof specification : [:] generated artifacts
1
1 S N
1 1
! s (e N s
1 1
Equivalence SSProve Jasmin

1 11J AST [«
! proof implementation 1 Coq AST [« implementation
! (. 0 \ 7 A\
1 1
LI R el e e e e .

(N\ 4

Assembly
Assembly Coq AST > implementa{tion
. J |

letager@cs.au Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 20

Introduction

Workflow - Jasmin

verified translation/compilation

______ Hacspec
SR | S specification —> validated translation
|- This paper —>» unverified parsing/pretty printing
R el -
1 : formalized in Coq
1
1 \ 4 \ 4 : formalized in SSProve
1 —)
1 . .
: SSProve - Equivalence - Functional ! C] handwritten artifacts
1 specification proof specification : [:] generated artifacts
1
1 S N
1 1
! e 1 a e
1 1
Equivalence SSProve Jasmin

1 1 1 AST <
! proof implementation 1 Coq AST [« implementation
! 0 \ >y A\
1 1
L) .

(N\ 4

Assembly
Assembly Coq AST > implementa{tion
. J |

letager@cs.au Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 21

Example: One-time pad (OTP)

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 22

Example: One-time pad (OTP)

Specification

Hacspec definition

fn xor(wl : ub4, w2 : ubd) -> u6d {
let mut x : ub4d = wi;
let mut y : u6éd = w2;
let mut r : u64 = x = y;

r

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 23

Example: One-time pad (OTP)

Specification

automatically translated to SSProve

Definition hacspec_xor (wl : int64)
(w2 : int64) :=

letbm x_0 loc(x_0_loc) := wl in

letbm y_1 loc(y_1_loc) := w2 in

letbm r_2 loc(r_2_loc) := x_0 ." y_1 in

r_2.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 24

Example: One-time pad (OTP)

Jasmin implementation

Jasmin implementation

export fn xor(reg u64 x, reg u64d y)
-> reg u64d

i G Jasmin
{ Jasmin Coq AST T]

e [{zm)
r = X;

r "=y,
return r;

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 25

Example: One-time pad (OTP)

Jasmin implementation

automatically translated to SSProve.

Definition JXOR id wl w2 =

put x = wl ;;

put y = w2 ;;

put r ;== wl @ w2 j;
rl < get r j;

ret ri.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters

SsProve o
[implementation] < [h““"' Coa AST]

The Last Yard

January 15

26

Example: One-time pad (OTP)

Equivalence of implementation and specification

Equivalence of translations Nl e

specification
Equivalence
proof

Theorem xor_equiv : V id wl w2,
H{T}
JXOR id wl w2 =~ hacspec_xor_state wl w2
{ A (vo, ho) (v1i, h1), vo =v1 }.

is proved using the rules of the relational program logic of SSProve.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15

Example: One-time pad (OTP)

Security proof

SSProve define
@ a package: collection of procedures with import and export interface
@ a game: a package without imports
@ a game pair. two games that export the same procedures.
e e.g. a real encryption scheme and an oracle

game hopping: chain of game pairs

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 28

Example: One-time pad (OTP)

Security proof

The Jasmin game (JOTP_real) exports

Definition JOTP id m :
k_val < sample uniform (‘'word n) ;;
JXOR id m k_val.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 29

Example: One-time pad (OTP)

Security proof

The SSProve game (0TP_real) exports

Definition OTP m :
k_val < sample uniform (‘'word n) ;;
ret m & k_val.

for which we have a security proof

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 30

Example: One-time pad (OTP)

Security proof

We now show the Jasmin implementation is secure (IND-CPA). Combining
Lemma JOTP_OTP_perf_ind id : JOTP_real id ~ O0TP_real.

with the already established security of 0TP_real
we get security of JOTP_real

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 31

Framework

We now have a foundation framework!

@ Specifying in Hacspec and implementing in Jasmin
@ de-extracting and translating £+ into SSProve

@ proving equivalence and security properties in SSProve

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 32

Evaluation: Advanced Encryption Standard (AES)

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 33

Evaluation: Advanced Encryption Standard (AES)

For a pseudo random function (PRF) one can build an encryption scheme

Definition PRF_ENC f m :=
k_val < kgen ;; enc m k_val.

The enc function is given by

Definition enc m k :=
r < sample uniform N ;;
let pad ;= f r k in let ¢ :==m & pad in
ret (r, c).

January 15 34

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard

Evaluation: Advanced Encryption Standard (AES)

The high-level structure of the security analysis is
@ (imp.): intermediate impl. in SSProve

@ (fun.): functional impl. in Coq. ={]44[}

implementation

@ (imp.) = (fun.).
Q (trans.) = (imp.).
© Connect to the existing security proof

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 35

Evaluation: Advanced Encryption Standard (AES)

Connecting AES to the PRF security proof

The encryption function implemented in Jasmin:

fn enc(reg ul28 n,reg ul28 k,reg ul28 p)
-> reg ul28

{ [Jamin Coq AST

Jasmin
implementation

Assembly
implementation

-
reg ul28 mask, c; v
mask = aes(n, k); "”emm’c"w]_'[
c = xor(mask, p);

return(c);

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 36

Evaluation: Advanced Encryption Standard (AES)

Connecting AES to the PRF security proof

We automatically translate it into SSProve as
JENC and use it in the following security game:

Definition JPRF_real id m := [mf::,:::m]4_[” c,.qm]
k_val < kgen ;;
r < sample uniform N ;;
res < JENC id k_val r m ;;
ret (r, res)

prove it indistinguishability from a similar scheme CPRF_real JENC.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard

January 15 37

Evaluation: Advanced Encryption Standard (AES)

Connecting AES to the PRF security proof

Now we show

Theorem JPRF_perf_ind id :
JPRF_real id ~ CPRF_real.

and

Theorem CPRF_perf_ind :
CPRF_real ~ PRF_real aes.

this combined with an equivalence to a Hacspec specification gives us end-to-end
verification of AES.

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 38

We contribute
@ a framework for end-to-end verification
@ a monadic embedding of a simple subset of Rust into SSProve
e with a refinement relation to a logical specification in Coq

@ pritty-printing of Jasmin and automatic translation to SSProve
the framework has strong guarantees:
@ Hacspec: translation validation
@ SSProve: equivalence proof, security properties
@ Jasmin: the preservation of operation semantics (robust compilation)

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hritcu, Spitters The Last Yard January 15 39

	Introduction
	Hacspec
	SSProve
	Jasmin
	Example: One-time pad (OTP)
	Evaluation: Advanced Encryption Standard (AES)
	Conclusion

