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Introduction
Problems

Specification gap
current standards use informal pseudo-code.

Implementation gap
unoptimized or unverified compilers
cryptographic primitives are often implemented directly in assembly
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Introduction
Goal

We therefore want
a unified foundational framework for
end-to-end formal verification of
efficient cryptographic implementations

thus

The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography
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Hacspec
Background - What is it?

The High Assurance Cryptography SPECification (Hacspec) language
provides a shared language
makes internet standards (e.g. IETF and NIST) machine-readable.
is a simple subset of Rust
has translations to proof assistants (e.g. Coq, EasyCrypt, or F⋆)
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Hacspec
Workflow: Hacspec → SSProve

Starting from an official standard (e.g. NIST or IETF) produce Hacspec and generate
functional specification

easier to define and prove properties
SSProve specification

closer to efficient implementation
Translation validation

build a proof of equality
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SSProve

SSProve:
is a foundational framework for modular cryptographic proofs in Coq
essentially embeds a stateful language inside Coq
the Dijkstra monad framework gives us a program logic to reason about this
embedded language
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SSProve
Workflow: Security proof

We use the relational Hoare logic of SSProve for
equivalence proof: implementation ≈ specification
security proofs about specification
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Hacspec
Equivalence between the Hacspec translations

We build a modular syntactic translation as triples
the functional specification
the SSProve specification
a proof of equality between them

This can be seen as a binary logical relation
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Hacspec
Equivalence between the Hacspec translations

An example of such triple
Hacspec: let x := y; k

becomes
Coq: let x_fun := y_fun in k_fun

SSProve: x_imp ← y_imp ;; k_imp

Equality proof: ssprove_bind
Other examples are

loops, mutable let bindings, early returns, operator calls, lifting pure values, etc.
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Jasmin
Background

Jasmin
is a low-level language designed for implementing high-speed cryptography,
has a compiler implemented and verified in Coq supporting x86 and ARM
has a formal big-step operational semantics in Coq.
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Jasmin
Background

Jasmin
is an imperative language with structured control flow

loops, conditionals, and procedure calls.
has types for

booleans, integers, bit-words of various sizes, and arrays.

compiler produces predictable assembly code
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Jasmin
Workflow: Jasmin → SSProve

From Jasmin we get
assembly implementation (from Jasmin compiler)

for which we
pretty-print the internal AST (de-extracting) to Coq syntax.
Jasmin Coq AST ⇒ SSProve implementation
get a mechanized proof that semantics are preserved
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Jasmin
Correctness theorem

The main theorem, connecting function calls in Jasmin and in SSProve states that:
if f (v⃗)⇝ w⃗

then trans(f )(trans(v⃗))⇝ trans(w⃗)

the translation modifies memory in an equivalent manner. Combined with
the correctness theorems of the Jasmin compiler

allows us to prove properties about Jasmin in SSProve
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Workflow
Jasmin
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Example: One-time pad (OTP)
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Example: One-time pad (OTP)
Specification

Hacspec definition

fn xor(w1 : u64, w2 : u64) -> u64 {
let mut x : u64 = w1;
let mut y : u64 = w2;
let mut r : u64 = x ^ y;
r

}
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Example: One-time pad (OTP)
Specification

automatically translated to SSProve

Definition hacspec_xor (w1 : int64)
(w2 : int64) :=

letbm x_0 loc( x_0_loc ) := w1 in
letbm y_1 loc( y_1_loc ) := w2 in
letbm r_2 loc( r_2_loc ) := x_0 .^ y_1 in
r_2.
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Example: One-time pad (OTP)
Jasmin implementation

Jasmin implementation

export fn xor(reg u64 x, reg u64 y)
-> reg u64

{
reg u64 r;
r = x;
r ^= y;
return r;

}
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Example: One-time pad (OTP)
Jasmin implementation

automatically translated to SSProve.

Definition JXOR id w1 w2 :=
put x := w1 ;;
put y := w2 ;;
put r := w1 ⊕ w2 ;;
r1 ← get r ;;
ret r1.
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Example: One-time pad (OTP)
Equivalence of implementation and specification

Equivalence of translations

Theorem xor_equiv : ∀ id w1 w2,
⊢ {{{⊤}}}
JXOR id w1 w2 ≈ hacspec_xor_state w1 w2

{{{ λ (v0 , h0) (v1 , h1) , v0 = v1 }}}.

is proved using the rules of the relational program logic of SSProve.
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Example: One-time pad (OTP)
Security proof

SSProve define
a package: collection of procedures with import and export interface
a game: a package without imports
a game pair: two games that export the same procedures.

e.g. a real encryption scheme and an oracle

game hopping: chain of game pairs
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Example: One-time pad (OTP)
Security proof

The Jasmin game (JOTP_real) exports

Definition JOTP id m :
k_val ← sample uniform ( ’word n) ;;
JXOR id m k_val.
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Example: One-time pad (OTP)
Security proof

The SSProve game (OTP_real) exports

Definition OTP m :
k_val ← sample uniform ( ’word n) ;;
ret m ⊕ k_val.

for which we have a security proof
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Example: One-time pad (OTP)
Security proof

We now show the Jasmin implementation is secure (IND-CPA). Combining

Lemma JOTP_OTP_perf_ind id : JOTP_real id ≈ OTP_real.

with the already established security of OTP_real
we get security of JOTP_real
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Framework
We now have a foundation framework!

Specifying in Hacspec and implementing in Jasmin
de-extracting and translating into SSProve
proving equivalence and security properties in SSProve
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Evaluation: Advanced Encryption Standard (AES)
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Evaluation: Advanced Encryption Standard (AES)

For a pseudo random function (PRF) one can build an encryption scheme

Definition PRF_ENC f m :=
k_val ← kgen ;; enc m k_val.

The enc function is given by

Definition enc m k :=
r ← sample uniform N ;;
let pad := f r k in let c := m ⊕ pad in
ret (r, c).
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Evaluation: Advanced Encryption Standard (AES)

The high-level structure of the security analysis is
1 (imp.): intermediate impl. in SSProve
2 (fun.): functional impl. in Coq.
3 (imp.) ≈ (fun.).
4 (trans.) ≈ (imp.).
5 Connect to the existing security proof

letager@cs.au.dk Haselwarter, Hvass, Hansen, Winterhalter, Hriţcu, Spitters The Last Yard January 15 35



Evaluation: Advanced Encryption Standard (AES)
Connecting AES to the PRF security proof

The encryption function implemented in Jasmin:

fn enc(reg u128 n,reg u128 k,reg u128 p)
-> reg u128

{
reg u128 mask, c;
mask = aes(n, k);
c = xor(mask, p);
return(c);

}
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Evaluation: Advanced Encryption Standard (AES)
Connecting AES to the PRF security proof

We automatically translate it into SSProve as
JENC and use it in the following security game:

Definition JPRF_real id m :=
k_val ← kgen ;;
r ← sample uniform N ;;
res ← JENC id k_val r m ;;
ret (r, res)

prove it indistinguishability from a similar scheme CPRF_real JENC.
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Evaluation: Advanced Encryption Standard (AES)
Connecting AES to the PRF security proof

Now we show

Theorem JPRF_perf_ind id :
JPRF_real id ≈ CPRF_real.

and

Theorem CPRF_perf_ind :
CPRF_real ≈ PRF_real aes.

this combined with an equivalence to a Hacspec specification gives us end-to-end
verification of AES.
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Conclusion

We contribute
a framework for end-to-end verification
a monadic embedding of a simple subset of Rust into SSProve

with a refinement relation to a logical specification in Coq

pritty-printing of Jasmin and automatic translation to SSProve
the framework has strong guarantees:

Hacspec: translation validation
SSProve: equivalence proof, security properties
Jasmin: the preservation of operation semantics (robust compilation)
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